Tomography Observations of Osteoblast Seeding on 3-D Collagen Scaffold by Synchrotron Radiation Hard X-Ray

Author(s):  
H. Liou ◽  
H. Lin ◽  
W. Chen ◽  
W. Liou ◽  
Y. Hwu

In recent years, research into three-dimensional (3-D) scaffolds for tissue engineering has become an important topic. To avoid biological rejection, there are many biocompatible materials being developed for in vitro cultivation of autologous cells for implantation into the human body. The 3-D structures of scaffolds are not easily observed using traditional optical or electron microscopes, which only allow examination of the surfaces of samples or ultra thin films, and often require complicated pre-treating processes. The high-brilliance synchrotron radiation (SR) hard X-ray is an emerging technique to acquire tomography. This study involves the successful reconstruction of 3-D images and the animation of the structure of a collagen scaffold. The images were obtained using synchrotron radiation hard X-ray images, which eliminates the need for embedding and microtoming. SR hard X-ray imaging is a non-destructive technique, which has demonstrated a high spatial resolution and transmission, enabling the morphology of osteoblasts adhered on the inner surfaces of the collagen scaffolds to be captured. It is a convenient facility to obtain 3-D tomography images for biomaterial studies. This is the first study to observe the 3-D structures of collagen scaffolds and aquire detailed images of osteoblast attachment on the scaffold, by utilization of third-generation SR hard X-ray radiography.

1996 ◽  
Vol 29 (1) ◽  
pp. 133-146 ◽  
Author(s):  
Peter Cloetens ◽  
Raymond Barrett ◽  
José Baruchel ◽  
Jean-Pierre Guigay ◽  
Michel Schlenker

Crystals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 12 ◽  
Author(s):  
Mihai R. Gherase ◽  
David E. B. Fleming

For the past several decades, synchrotron radiation has been extensively used to measure the spatial distribution and chemical affinity of elements found in trace concentrations (<few µg/g) in animal and human tissues. Intense and highly focused (lateral size of several micrometers) X-ray beams combined with small steps of photon energy tuning (2–3 eV) of synchrotron radiation allowed X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XAS) techniques to nondestructively and simultaneously detect trace elements as well as identify their chemical affinity and speciation in situ, respectively. Although limited by measurement time and radiation damage to the tissue, these techniques are commonly used to obtain two-dimensional and three-dimensional maps of several elements at synchrotron facilities around the world. The spatial distribution and chemistry of the trace elements obtained is then correlated to the targeted anatomical structures and to the biological functions (normal or pathological). For example, synchrotron-based in vitro studies of various human tissues showed significant differences between the normal and pathological distributions of metallic trace elements such as iron, zinc, copper, and lead in relation to human diseases ranging from Parkinson’s disease and cancer to osteoporosis and osteoarthritis. Current research effort is aimed at not only measuring the abnormal elemental distributions associated with various diseases, but also indicate or discover possible biological mechanisms that could explain such observations. While a number of studies confirmed and strengthened previous knowledge, others revealed or suggested new possible roles of trace elements or provided a more accurate spatial distribution in relation to the underlying histology. This area of research is at the intersection of several current fundamental and applied scientific inquiries such as metabolomics, medicine, biochemistry, toxicology, food science, health physics, and environmental and public health.


2021 ◽  
pp. 1-7
Author(s):  
Brian K. Tanner ◽  
Patrick J. McNally ◽  
Andreas N. Danilewsky

X-ray diffraction imaging (XRDI) (topography) measurements of silicon die warpage within fully packaged commercial quad-flat no-lead devices are described. Using synchrotron radiation, it has been shown that the tilt of the lattice planes in the Analog Devices AD9253 die initially falls, but after 100 °C, it rises again. The twist across the die wafer falls linearly with an increase in temperature. At 200 °C, the tilt varies approximately linearly with position, that is, displacement varies quadratically along the die. The warpage is approximately reversible on cooling, suggesting that it has a simple paraboloidal form prior to encapsulation; the complex tilt and twisting result from the polymer setting process. Feasibility studies are reported, which demonstrate that a divergent beam and quasi-monochromatic radiation from a sealed X-ray tube can be used to perform warpage measurements by XRDI in the laboratory. Existing tools have limitations because of the geometry of the X-ray optics, resulting in applicability only to simple warpage structures. The necessary modifications required for use in situations of complex warpage, for example, in multiple die interconnected packages are specified.


2004 ◽  
Vol 37 (5) ◽  
pp. 757-765 ◽  
Author(s):  
L. E. Levine ◽  
G. G. Long

A new transmission X-ray imaging technique using ultra-small-angle X-ray scattering (USAXS) as a contrast mechanism is described. USAXS imaging can sometimes provide contrast in cases where radiography and phase-contrast imaging are unsuccessful. Images produced at different scattering vectors highlight different microstructural features within the same sample volume. When used in conjunction with USAXS scans, USAXS imaging provides substantial quantitative and qualitative three-dimensional information on the sizes, shapes and spatial arrangements of the scattering objects. The imaging technique is demonstrated on metal and biological samples.


2010 ◽  
Vol 18 (4) ◽  
pp. 429-441 ◽  
Author(s):  
A. Rack ◽  
F. Garcia-Moreno ◽  
C. Schmitt ◽  
O. Betz ◽  
A. Cecilia ◽  
...  

Langmuir ◽  
2020 ◽  
Vol 36 (37) ◽  
pp. 10923-10932
Author(s):  
Nanako Sakata ◽  
Yoshihiro Takeda ◽  
Masaru Kotera ◽  
Yasuhito Suzuki ◽  
Akikazu Matsumoto

2018 ◽  
Vol 89 (10) ◽  
pp. 10G126 ◽  
Author(s):  
N. R. Pereira ◽  
A. T. Macrander ◽  
C. Stoeckl ◽  
E. O. Baronova

Sign in / Sign up

Export Citation Format

Share Document