Modeling of Concrete Composite Induced by Multi-Walled Carbon Nanotubes Using Response Surface Methodology

Author(s):  
R.S. Rimal Isaac ◽  
S. Subin ◽  
P. Prakash ◽  
P.K. Praseetha

In this present work a response surface optimization was done to study the effect of the variables curing days, Multi-Walled Carbon Nanotube (MWCNT) and plasticizer on the strength of concrete. The variables were varied in three levels and a total of 15 cylindrical specimens were fabricated based on the experimental design. For measuring the effect of the variables, split tensile strength test was carried out on the specimens. For proper mixing of the MWCNT, sonication is carried out with plasticizer and then this mixture is added with water and the specimens are fabricated. Only the terms with p < 0.05 are chosen as significant. The results shows that an increase in MWCNT %, increased the split tensile strength of the concrete.

Oral ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 190-198
Author(s):  
Manuela Spinola ◽  
Amanda Maria Oliveira Dal Piva ◽  
Patrícia Uchôas Barbosa ◽  
Carlos Rocha Gomes Torres ◽  
Eduardo Bresciani

Background: Nanoparticles such as multi-walled carbon nanotubes present resistance, resilience and biocompatibility with human tissues and could be incorporated into glass ionomer cement materials to improve their characteristics. Therefore, the aim of the present study was to evaluate the effect of multi-walled carbon nanotube (MWCNT) incorporation on different glass ionomer cements’ compressive (σc) and diametral tensile strengths (σt). Methods: Eighty (80) specimens were divided into four groups (N = 20/gr) according to the glass ionomer cement type (conventional and high-viscosity) and the presence or absence of multi-walled carbon nanotubes. Samples were kept in water for 24 h prior to the tests. Data were analyzed using two-way ANOVA and Tukey’s test (p = 0.05). Results: For both σc (p = 0.1739) and σt (p = 0.2183), the glass ionomer cements’ viscosity did not influence the results. The presence of MWCNTs decreased the mean compressive strength values (p = 0.0001) and increased the diametral tensile strength (p = 0.0059). For both conventional and high-viscosity glass ionomer cements, the compressive strength values were higher than the tensile strength data. Conclusions: Regardless of the cement viscosity, the multi-walled carbon nanotube incorporation reduced the compressive strength and increased the tensile strength values.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fahad Saleem Ahmed Khan ◽  
N. M. Mubarak ◽  
Mohammad Khalid ◽  
Rashmi Walvekar ◽  
E. C. Abdullah ◽  
...  

AbstractModified multi-walled carbon nanotubes (f-MWCNTs) and hydroxyapatite nanorods (n-HA) were reinforced into polypropylene (PP) with the support of a melt compounding approach. Varying composition of f-MWCNTs (0.1–0.3 wt.%) and nHA (15–20 wt.%) were reinforced into PP, to obtain biocomposites of different compositions. The morphology, thermal and mechanical characteristics of PP/n-HA/f-MWCNTs were observed. Tensile studies reflected that the addition of f-MWCNTs is advantageous in improving the tensile strength of PP/n-HA nanocomposites but decreases its Young’s modulus significantly. Based on the thermal study, the f-MWCNTs and n-HA were known to be adequate to enhance PP’s thermal and dimensional stability. Furthermore, MTT studies proved that PP/n-HA/f-MWCNTs are biocompatible. Consequently, f-MWCNTs and n-HA reinforced into PP may be a promising nanocomposite in orthopedics industry applications such as the human subchondral bone i.e. patella and cartilage and fabricating certain light-loaded implants.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103365-103372 ◽  
Author(s):  
Lei Liu ◽  
Dong Wang ◽  
Yuan Hu

Negative graphene oxide was combined with positive chitosan-modified multi-walled carbon nanotubes in aqueous solution and then thermally reduced to fabricate a multi-walled carbon nanotube/graphene (MWCNT/G) hybrid material.


2008 ◽  
Vol 41-42 ◽  
pp. 27-32 ◽  
Author(s):  
Chun Sheng Lu

Two available strength data sets of single-walled and multi-walled carbon nanotubes are analysed, and the effects of sample sizes on their tensile strengths are investigated. A minimum information criterion is applied to determine the optimal strength distribution. The results show that, in contrast to a two-parameter Weibull distribution, lognormal distribution seems to be a more suitable choice. A simple extrapolation of classical Weibull statistics to nanoscales may result in overestimation on the tensile strength of carbon nanotubes.


2017 ◽  
Vol 76 (10) ◽  
pp. 2593-2602 ◽  
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Sedighi ◽  
Ehsan Jabbari

Abstract This paper reports a facile method for removal of sulfate from wastewater by magnetic multi-walled carbon nanotubes (MMWCNTs). Multi-walled carbon nanotubes and MMWCNTs were characterized by X-ray diffraction, Raman, transmission electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The results of the analysis indicated that MMWCNTs were synthesized successfully. The MMWCNTs can be easily manipulated in a magnetic field for the desired separation, leading to the removal of sulfate from wastewater. Response surface methodology (RSM) coupled with central composite design was applied to evaluate the effects of D/C (adsorbent dosage per initial concentration of pollutant (mgadsorbent/(mg/l)initial)) and pH on sulfate removal (%). Using RSM methodology, a quadratic polynomial equation was obtained, for removal of sulfate, by multiple regression analysis. The optimum combination for maximum sulfate removal of 93.28% was pH = 5.96 and D/C = 24.35. The experimental data were evaluated by the Langmuir and Freundlich adsorption models. The adsorption capacity of sulfate in the studied concentration range was 56.94 (mg/g). It was found out that the MMWCNTs could be considered as a promising adsorbent for the removal of sulfate from wastewater.


2016 ◽  
Vol 4 (21) ◽  
pp. 3823-3831 ◽  
Author(s):  
Stefano Fedeli ◽  
Alberto Brandi ◽  
Lorenzo Venturini ◽  
Paola Chiarugi ◽  
Elisa Giannoni ◽  
...  

An efficient drug delivery system through a straightforward approach to multi-walled carbon nanotube decoration.


Sign in / Sign up

Export Citation Format

Share Document