Mechanical Behavior and Shrinkage of Algerian Very High Performance Concrete Using Local Materials

Author(s):  
Dalila Chiheb ◽  
Mebarek Belaoura ◽  
Mohamed Nadib Oudjit ◽  
Abderrahim Bali

In some parts of Algeria, the alluvial deposits are depleted. Optimizing the use of available resources, has become gradually urgent need and more and more important. Algeria does not remain on the sidelines of this idea, an approach is part of a sustainable development has been developed to make available to the manufacturer a steady stream of material coming from the exploitation of limestone. The importance of this production can be explained by the activity of the carrier ever growing sector. Research programs have been launched in Algeria to focus on aspects, related to the composition of concrete and influence of the nature of the constituents on the mechanical mixing quality, especially compressive strength remains the point of view of the engineer, the most important property of the material, if we exclude the sustainability indicators. Usual concretes were made using local materials. Results showed that the intrinsic properties of the constituents of concrete, and particularly studied the crushed aggregate, provide the concrete characteristics resistors quite satisfactory. To go further and in a growing cares about improving the mechanical strength of these concretes we tried to formulate a very high performance concrete (VHPC) made from local crushed aggregate, in this case the crushed limestone sands as a resource alternative to over-exploited rolled sands. The objective of this study is to enhance the crushed sand in the formulation of VHPC. The referred physical-mechanical performances are related to defer deformations within time (shrinkage) and instantaneous mechanical compressive and flexural strength.

1969 ◽  
Vol 73 (701) ◽  
pp. 449-452
Author(s):  
J. E. Cadoux

The Matra 530 is currently called a second generation air-to-air missile. Indeed the first generation of air-to-air missiles was represented in France by the Nord 5103 which was command-guided, or the Matra 511 which was a semi-active, pure pursuit curve missile. In the second part of the 1950's the requirement was obvious for a sophisticated interception system capable of coping with the high and medium altitude threat represented by heavy and medium bombers. The destruction of this threat required a close link with an interception system composed of ground radars, ground control equipment, sophisticated high performance interceptor aircraft and, as a last link, a very high performance missile. From the French Air Force point of view, the two main characteristics of this missile as the last link of an interceptor system, were first its flexibility in different weather environment and counter measure environment; second, its capability to decrease to the maximum the penetration of the enemy bomber, which meant that the missile should be capable of attacking not only in the rear sector but also in frontal attack and in fact in all sectors around the attacking bomber.


2017 ◽  
Vol 259 ◽  
pp. 70-74
Author(s):  
Milan Holý

This paper deals with the roof structural system using prestressed girders made of ultra-high performance concrete (UHPC). One of the aims of this study is to verify whether the option of the UHPC girders could be under certain boundary conditions competitive with the commonly used construction materials. Due to its high strength, UHPC enables the design of the structural elements with the high load bearing capacity and with smaller slenderness compared to normal strength concrete elements. The price of UHPC is currently still very high compared to the normal strength concretes or steel. Therefore, its use for the usual designed structures does not recently seem too economically attractive. The effect of material savings is nonnegligible in the case, that a self-weight of the structure forms dominant component of the total load. In addition to the high strength, UHPC has very high resistance to environmental influences. It is therefore likely, that UHPC could be advantageously applied e.g. for the roofing of industrial buildings of chemical plants with high aggressive environments, because there are high demands on the life cycle of the structure.


10.14311/174 ◽  
2001 ◽  
Vol 41 (1) ◽  
Author(s):  
J. Toman ◽  
R. Černý

The thermal conductivity of two types of high performance concrete was measured in the temperature range from 100 °C to 800 °C and in the moisture range from dry material to saturation water content. A transient measuring method based on analysis of the measured temperature fields was chosen for the high temperature measurements, and a commercial hot wire device was employed in room temperature measurements of the effect of moisture on thermal conductivity. The measured results reveal that both temperature and moisture exhibit significant effects on the values of thermal conductivity, and these effects are quite comparable from the point of view of the magnitude of the observed variations.


2012 ◽  
Vol 174-177 ◽  
pp. 1067-1071 ◽  
Author(s):  
Jon Bi ◽  
Binsar Hariandja ◽  
Iswandi Imran ◽  
Ivindra Pane

Keywords: High Performance Concrete, mix proportions, compressive strength , and durability Abstract. The use of concrete materials to date, remain a key ingredient in such construction work on the construction of building, bridges and infrastructure. One indicator is the increased production of readymix concrete which is nearly 16 billion tons in 2010. But the increased used of concrete, apparently bring the impact of environmental damage. This is due to the fact that production of raw materials contributes greatly to CO2 in the air. One effort to reduce such impact is to use of high performance concretes. Mix proportion of High Performance Concrete are strongly determined by the quality and availablity of local materials. The implications of research result from other countries can‘t be directly used. Therefore is need to the research on development of High Performance Concrete mix using locally available materials. In this research the mix proportions for f’c : 60 and 80 MPa are developed using local materials that are commonly used by readymix producers. The high Performance Concrete is developed based on compressive strength and durability. The result is expected to be applied to readymix industry particularly for construction use in Indonesia.


2013 ◽  
Vol 838-841 ◽  
pp. 170-174
Author(s):  
Guo Jun Wang

The effect on concrete strength of various kinds factor was systematically studied by orthogonal test. The amount of cementitious material, slag content, silicon content, water cement ratio, aggregate gradation and other factors was consider. By adjusting the parameters of the experiment, the C100 concrete was preparation successfully, which has high stregth and pumping perfomance. The interface structure of the C100 concrete was analyzed by scanning electron microscope (SEM) and found that C100 has a better interface structures. The concrete is a system and his strength depends on the strength of the suitability of various materials, which is a new point of view was put forward.


2016 ◽  
Vol 722 ◽  
pp. 311-315 ◽  
Author(s):  
Michal Ženíšek ◽  
Tomáš Vlach ◽  
Lenka Laiblová

This article deals with optimal dosage of metakaolin as addition in high performance concrete. The main criteria for assessing the optimal dosage of metakaolin was compressive strength, rheological behaviour and economic benefits. Metakaolin was added to the mixture of high performance concrete in the range from 0 to 25% weight of cement. The comparison of metakaolin and microsilica, which is often used by concrete producers due to its excellent properties, is also performed in this article. The experiments showed that using metakaolin as addition in high performance concrete affects the compressive strength and rheological behaviour positively. While the compressive strength increases especially at lower doses of metakaolin and at higher doses remained unchanged, changes in rheological behaviour were most obvious at the higher doses. From this point of view, it is possible to recommend a higher dose of metakaolin.


2017 ◽  
Vol 3 (3) ◽  
pp. 190-198 ◽  
Author(s):  
Mohamadtaqi Baqersad ◽  
Ehsan Amir Sayyafi ◽  
Hamid Mortazavi Bak

During the past decades, there has been an extensive attention in using Ultra-High Performance Concrete (UHPC) in the buildings and infrastructures construction. Due to that, defining comprehensive mechanical properties of UHPC required to design structural members is worthwhile. The main difference of UHPC with the conventional concrete is the very high strength of UHPC, resulting designing elements with less weight and smaller sizes.  However, there have been no globally accepted UHPC properties to be implemented in the designing process. Therefore, in the current study, the UHPC mechanical properties such as compressive and tensile strength, modulus of elasticity and development length for designing purposes are provided based on the reviewed literature. According to that, the best-recommended properties of UHPC that can be used in designing of UHPC members are summarized. Finally, different topics for future works and researches on UHPC’s mechanical properties are suggested.


2015 ◽  
Vol 105 (15) ◽  
pp. 1-8
Author(s):  
Mark P Manning ◽  
Brad D Weldon ◽  
David V Jauregui ◽  
Craig M Newtson

Author(s):  
Mark P. Manning ◽  
Brad D. Weldon ◽  
Craig M. Newtson

<p>The superior mechanical and durability properties of ultrahigh-performance concrete (UHPC) offer significant potential advantages when used as an overlay material—a common method for extending the service life of concrete bridge decks. Providing high compressive strength, improved environmental resistance, and increased service-life expectancy compared to conventional concretes, UHPC mixture proportions can be adapted using local materials. Flexural testing of a high-performance concrete (HPC; 66 MPa) prestressed channel beam bridge girder was conducted to investigate the use of nonproprietary UHPC (120 MPa) developed using materials primarily local to New Mexico, USA, for bridge deck overlays. The girder was first subjected to cyclic loading (minimum 1000 load-unload cycles to deflection-based service load conditions) to establish baseline performance and behavior. The girder surface was then textured, and a 25 mm nonproprietary UHPC overlay was cast. Cyclic loading was repeated for the girder-overlay system before loading the system to failure to investigate post-cracking flexural behavior. The UHPC overlay developed satisfactory bond with the HPC substrate without a bonding agent and exhibited no visible signs of distress or debonding after cyclic loading. Comparative analyses indicated increased stiffness and capacity for the girder- overlay system.</p>


Sign in / Sign up

Export Citation Format

Share Document