Modeling and Numerical Simulation of the Effect of Temperature on the LCF Behaviour of a CuCrZr Alloy Specimen

Author(s):  
M. Benhaddou ◽  
M. Ghammouri ◽  
Z. Hammouch ◽  
F. Latrache

The main originality of this work consists in investigating low cycle fatigue of cylindrical test piece with wings under imposed constraint and for the temperature 20°c, 200°c, 400°c. Based on a combination between the fatigue parameter of Jiang-Sehitoglu and the relationship of Coffin-Manson, a numerical model for the prediction of the number of cycles at break. It was found that the CuCrZr cylindrical test piece showed a reduction in fatigue life with increasing temperature.

Author(s):  
Mohammed Benhaddou ◽  
M. Abbadi ◽  
M. Ghammouri

The main originality of this work consists in investigating low cycle fatigue of AISI 316L cardiovascular stents under hypertensive loading. For this purpose, two geometries of stents are expanded to various diameters and subjected to hypertensive blood pressure. Based on a combination between the fatigue parameter of Jiang-Sehitoglu and the relationship of Coffin-Manson, a numerical model for the prediction of the number of cycles to crack failure is developed. The stent is found to exhibit a fatigue life reduction with the increase of the expansion diameter due to ratchetting strain. In addition, the location of the failure is independent on the design. However, the U-shape strut permits a better distribution of pressure over the stent strut resulting in a longer fatigue life as compared to the Ω-shape.


2014 ◽  
Vol 891-892 ◽  
pp. 422-427 ◽  
Author(s):  
Rebecka Brommesson ◽  
Magnus Hörnqvist ◽  
Magnus Ekh

During low-cycle fatigue test with smooth bars the number of cycles to initiation is commonly defined from a measured relative drop in aximum load. This criterion cannot be directly related to the actual measure of interest - the crack length. By relating data from controlled crack growth tests under low-cycle fatigue conditions of a high strength Titanium alloy at 350°C and numerical simulation of these tests, it is shown that it is possible to determine the relationship between load drop and crack length, provided that care is taken to consider all relevant aspects of the materials stress-strain response.


2013 ◽  
Vol 785-786 ◽  
pp. 72-75
Author(s):  
Hong Qiang Guo

In this paper, the torsional fatigue tests under angle control at the constant strain rate of 5×10-3/s were conducted on 63Sn–37Pb solder over a range of . The relationship of stress and strain for the 63Sn–37Pb solder was investigated. The number of cycle with loading decrease of 25% was thought as the fatigue lifetime. The parameters of Coffin-Manson equation were determined based on the experimental data.


1965 ◽  
Vol 87 (2) ◽  
pp. 269-274 ◽  
Author(s):  
R. D. Stout ◽  
A. W. Pense

In a number of studies of data obtained from fatigue tests on various materials it has been shown that the number of cycles to failure is related to the strain range by a relationship of the form εNm=c where N is the number of cycles to failure, ε the strain range, and m and c are constants. In the low cycle portion of the strain range versus cycles to failure curve, evidence has been presented by several investigators to show that the relationship should be εpN1/2=c where εp is the plastic strain range and c, the constant, can be related to tensile ductility. Some investigators have found the relation εtNm=c more useful. Here εt is the total strain range. As a result of a series of Pressure Vessel Research Committee investigations at Lehigh University, a large body of low cycle fatigue data has been obtained for a wide range of steels, microstructures, heat-treatments, and testing conditions. A study of these data has been undertaken, with special emphasis on the suitability of a relationship of this type for analysis and representation of fatigue data. As a result of this study the following conclusions have been drawn: (a) In the range of 5000 to 100,000 cycles a relation εtNm = c appears to be satisfactory. (b) Using this latter relation, an analysis of the low cycle fatigue behavior of structural steels reveals that they can be classified into three broad groups on the basis of their composition. Each group has a characteristic value of m and c which can be used to predict their behavior over the range 5000–100,000 cycles. (c) The value of m and the total strain for 5000 cycle life can be related to n, the strain hardening exponent, for the steels. The total strain for 100,000 cycle life is related to the ultimate tensile strength of the steels. Using these relationships, the fatigue curve for a structural steel can be estimated from tension test data. (d) The effect of microstructural variations for a steel within any one of the three groups was of secondary importance when compared to the compositional groupings, although some systematic effects of microstructural variations were noted.


2021 ◽  
Vol 11 (6) ◽  
pp. 2673
Author(s):  
Mu-Hang Zhang ◽  
Xiao-Hong Shen ◽  
Lei He ◽  
Ke-Shi Zhang

Considering the relationship between inhomogeneous plastic deformation and fatigue damage, deformation inhomogeneity evolution and fatigue failure of superalloy GH4169 under temperature 500 °C and macro tension compression cyclic loading are studied, by using crystal plasticity calculation associated with polycrystalline representative Voronoi volume element (RVE). Different statistical standard deviation and differential entropy of meso strain are used to measure the inhomogeneity of deformation, and the relationship between the inhomogeneity and strain cycle is explored by cyclic numerical simulation. It is found from the research that the standard deviations of each component of the strain tensor at the cyclic peak increase monotonically with the cyclic loading, and they are similar to each other. The differential entropy of each component of the strain tensor also increases with the number of cycles, and the law is similar. On this basis, the critical values determined by statistical standard deviations of the strain components and the equivalent strain, and that by differential entropy of strain components, are, respectively, used as fatigue criteria, then predict the fatigue–life curves of the material. The predictions are verified with reference to the measured results, and their deviations are proved to be in a reasonable range.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1917 ◽  
Author(s):  
Mu-Hang Zhang ◽  
Xiao-Hong Shen ◽  
Lei He ◽  
Ke-Shi Zhang

The relation between deformation inhomogeneity and low-cycle-fatigue failure of T2 pure copper and the nickel-based superalloy GH4169 under symmetric tension-compression cyclic strain loading is investigated by using a polycrystal representative volume element (RVE) as the material model. The anisotropic behavior of grains and the strain fields are calculated by crystal plasticity, taking the Bauschinger effect into account to track the process of strain cycles of metals, and the Shannon’s differential entropies of both distributions of the strain in the loading direction and the first principal strain are employed at the tension peak of the cycles as measuring parameters of strain inhomogeneity. Both parameters are found to increase in value with increments in the number of cycles and they have critical values for predicting the material’s fatigue failure. Compared to the fatigue test data, it is verified that both parameters measured by Shannon’s differential entropies can be used as fatigue indicating parameters (FIPs) to predict the low cycle fatigue life of metal.


Author(s):  
Xiaozhi Wang ◽  
Joong-Kyoo Kang ◽  
Yooil Kim ◽  
Paul H. Wirsching

There are situations where a marine structure is subjected to stress cycles of such large magnitude that small, but significant, parts of the structural component in question experiences cyclic plasticity. Welded joints are particularly vulnerable because of high local stress concentrations. Fatigue caused by oscillating strain in the plastic range is called “low cycle fatigue”. Cycles to failure are typically below 104. Traditional welded joint S-N curves do not describe the fatigue strength in the low cycle region (< 104 number of cycles). Typical Class Society Rules do not directly address the low cycle fatigue problem. It is therefore the objective of this paper to present a credible fatigue damage prediction method of welded joints in the low cycle fatigue regime.


2001 ◽  
Author(s):  
Tara L. Arthur Moore ◽  
Lorna J. Gibson

Abstract Microdamage, in the form of small cracks, exists in healthy bone. Microdamage can be created by an overload or by repetitive motion (fatigue) during daily activities. Usually, microdamage is repaired during bone remodeling and a steady state is maintained. However, in cases of excessive microdamage creation or slowed bone remodeling, microdamage can coalesce to create a fracture. Our previous work [1,2] has investigated microdamage accumulation with increasing strain in bovine trabecular bone loaded in monotonic compression and compressive fatigue. Specimens fatigued at relatively high load levels fail after a few loading cycles, while specimens fatigued at lower load levels may undergo thousands of cycles before failure. During high cycle fatigue, microdamage may accumulate by the growth of pre-existing microcracks, as well as by the crack initiation seen in low cycle fatigue.


Sign in / Sign up

Export Citation Format

Share Document