Thermal Conductivity Analysis and Characterization of Copper Oxide Nanofluids through Different Techniques

2016 ◽  
Vol 40 ◽  
pp. 105-112 ◽  
Author(s):  
S. Nallusamy

The aim of this research is to analyse the thermal conductivity of copper oxide (CuO) nanofluids. In the present study CuO nanofluids were prepared using a new method of wet chemical method and the testing was carried out by various techniques. X-Ray Diffraction (XRD) pattern was used to determine the crystal structure and the average crystallite size of the CuO nanofluids. Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) were used to study the morphology and the particle size. Similarly Dynamic Light Scattering (DLS) was used to estimate the size of the CuO nanofluids. Finally UV-Visible absorption spectrum was used to measure the optical property of the CuO nanofluids. The thermal conductivity of CuO nanofluids was analyzed using KD2 Pro thermal property analyzer and concludes that the thermal conductivity is increased with the increase of particle loading.

2015 ◽  
Vol 14 (04) ◽  
pp. 1550013 ◽  
Author(s):  
Urvisha Tarpara ◽  
Poorvesh Vyas ◽  
Mihir J. Joshi

Calcium tartrate finds various applications. In the present study, calcium tartrate nanoparticles were synthesized by wet chemical method using surfactant mediated approach. The powder XRD pattern revealed the typical broadening of peaks indicating the nanostructured nature. The average crystallite size was calculated by applying the Scherrer's formula to powder XRD pattern and was found in the range of 22.8–23.9 nm. The particle size and morphology of the synthesized nanoparticles was confirmed by using transmission electron microscopy (TEM). FTIR spectroscopy was used to confirm the presence of various functional groups. From TGA, it was found that calcium tartrate nanoparticles remained stable up to 120°C and were having two water molecules associated with them. The results are compared with the bulk crystalline materials available in the literature.


2019 ◽  
Vol 8 (4) ◽  
pp. 7740-7742

Zns: Mn / ZnO inverted shell quantum dots have been synthesized using a wet chemical process.The study used Mn of 4 percent weight. Transmission Electron Microscope (TEM) images show a 50 nm order for the quantum dot size. Confirmation of the ZnO capped ZnSMn was done by TEM and X ray diffraction (XRD).The test band distance is measured using the UV Visible absorption characteristics. Measurement of the dielectric constant is done using the LCR meter


2014 ◽  
Vol 1081 ◽  
pp. 138-141
Author(s):  
Xiao Liu ◽  
Zheng Guan ◽  
Hong Ling Liu ◽  
Jun Hua Wu ◽  
Xian Hong Wang ◽  
...  

The polymer-laced Cu-ZnO nanoparticles were successfully synthesized by one-pot non-aqueous nanoemulsion method with the use of PEO-PPO-PEO as the surfactant, C14H29CH(OH)CH2OH as the reducing agent, octyl ether as the solvent, Zn (acac)2 and Cu (acac)2 as precursors. The Morphology and structure of nanoparticles were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). UV-visible absorption spectroscopy (UV-vis) and photoluminescence spectrometry (PL) were employed to valuate the optical properties of the nanoparticles. The Cu-ZnO nanoparticles with well defined optical properties are promising for optical, catalytic and biomedical applications.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2017 ◽  
Vol 8 ◽  
pp. 1257-1265 ◽  
Author(s):  
Urszula Klekotka ◽  
Magdalena Rogowska ◽  
Dariusz Satuła ◽  
Beata Kalska-Szostko

Ferrite nanoparticles with nominal composition Me0.5Fe2.5O4 (Me = Co, Fe, Ni or Mn) have been successfully prepared by the wet chemical method. The obtained particles have a mean diameter of 11–16 ± 2 nm and were modified to improve their magnetic properties and chemical activity. The surface of the pristine nanoparticles was functionalized afterwards with –COOH and –NH2 groups to obtain a bioactive layer. To achieve our goal, two different modification approaches were realized. In the first one, glutaraldehyde was attached to the nanoparticles as a linker. In the second one, direct bonding of such nanoparticles with a bioparticle was studied. In subsequent steps, the nanoparticles were immobilized with enzymes such as albumin, glucose oxidase, lipase and trypsin as a test bioparticles. The characterization of the nanoparticles was acheived by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray and Mössbauer spectroscopy. The effect of the obtained biocomposites was monitored by Fourier transform infrared spectroscopy. The obtained results show that in some cases the use of glutaraldehyde was crucial (albumin).


2014 ◽  
Vol 1081 ◽  
pp. 161-164
Author(s):  
Xue Mei Li ◽  
Zheng Guan ◽  
Hong Ling Liu ◽  
Jun Hua Wu ◽  
Xian Hong Wang ◽  
...  

FeAu/ZnO nanoparticles were successfully synthesized by nanoemulsion process with the use of poly (ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol) as the surfactant. The characterization of the FeAu/ZnO nanoparticles was performed using X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and UV-visible absorption spectroscopy, showing that the polymer-laced nanoparticles reveal high crystallinity, excellent dispersibility and well defined optical performance. The process of solvent dispersion-collection of FeAu/ZnO nanoparticles indicates that the nanoparticles possess good magnetic property for applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nadana Shanmugam ◽  
Shanmugam Cholan ◽  
Natesan Kannadasan ◽  
Kannadasan Sathishkumar ◽  
G. Viruthagiri

Nanocrystals of ZnS have been synthesized through simple chemical precipitation method using thiourea as sulphur source. The synthesized products were annealed at different temperatures in the range of 200–800∘C. The as-synthesized and annealed samples were characterized by X-ray diffraction (XRD), UV-Visible absorption (UV-Vis), and room temperature photoluminescence (PL) measurements. The morphological features of ZnS annealed at 200 and 500∘C were studied by atomic force microscope (AFM) and transmission electron microscope (TEM) techniques. The phase transformation of ZnS and formation of ZnO were confirmed by thermogravimetric (TG) and differential thermal analysis (DTA) curves.


2010 ◽  
Vol 97-101 ◽  
pp. 19-22 ◽  
Author(s):  
Yu Shiang Wu ◽  
Wen Ku Chang ◽  
Min Jou

Zinc stannate Zn2SnO4 (ZTO) nanoparticles were synthesized via a hydrothermal process utilizing sodium carbonate (Na2CO3) as a weak basic mineralizer. The samples were hydrothermally treated at 150, 200, and 250oC for 48 h. The X-ray diffraction (XRD) patterns show that the highly-crystalline ZTO nanostructure could be formed in a well-dispersed manner for the 250°C sample at a particle size of less than 50 nm. As determined from transmission electron microscopy (TEM) results, ZTO nanoparticles are face-centered cubic single crystals agglomerated together. The Raman spectra results showed that the ZTO nanocrystals have a spinel structure. Furthermore, photocatalytic activity was tested with methylene blue (MB) by UV irradiation. The ZTO synthesized by the 2 M Na2CO3 mineralizer at 250oC demonstrated excellent photocatalytic activity. The ZTO treated three different ways had three distinct UV-Visible absorption curves, which directly influences their corresponding photocatalytic activity.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Honghui Teng ◽  
Shukun Xu ◽  
Dandan Sun ◽  
Ying Zhang

Fe-doped TiO2nanotubes (Fe-TNTs) have been prepared by ultrasonic-assisted hydrothermal method. The structure and composition of the as-prepared TiO2nanotubes were characterized by transmission electron microscopy, X-ray diffraction, and UV-Visible absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of MO under visible light. The UV-visible absorption spectra of the Fe-TNT showed a red shift and an enhancement of the absorption in the visible region compared to the pure TNT. The Fe-TNTs were provided with good photocatalytic activities and photostability and under visible light irradiation, and the optimum molar ratio of Ti : Fe was found to be 100 : 1 in our experiments.


1998 ◽  
Vol 13 (9) ◽  
pp. 2580-2587 ◽  
Author(s):  
K. H. Ryu ◽  
J-M. Yang

The characteristics of nanosized silicon nitride powders with doped Y2O3 and Al2O3 fabricated by a plasma-reacted chemical process were investigated. The chemical compositions of the powders were analyzed by wet chemical analysis. The morphology and the size distribution were determined by transmission electron microscopy (TEM). TEM with energy dispersive spectroscopy (EDS) was used to verify the existence of sintering additives in each individual particle. The crystal structure of the powders was identified by the selected area diffraction pattern (SADP). X-ray diffraction (XRD) technique was used for phase analysis and the measurement of degree of crystallinity. The characteristics of chemical bonding was analyzed by using Fourier transform infrared spectroscopy (FTIR).


Sign in / Sign up

Export Citation Format

Share Document