scholarly journals Mathematical Models for the Hydrodynamic Characteristics of Abrasive Waterjets

2005 ◽  
Vol 291-292 ◽  
pp. 459-464
Author(s):  
Jun Wang ◽  
H. Liu

Predictive models for the particle velocity in an abrasive waterjet (AWJ) are developed following a CFD (computational fluid dynamics) study. A numerical study is then carried out to assess the models. It is shown that the predictive models can adequately predict this particle characteristic in an AWJ.

2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


2020 ◽  
Vol 25 ◽  
pp. 114-132 ◽  
Author(s):  
V.A. Agra Brandão ◽  
R. Araújo de Queiroz ◽  
R. Lima Dantas ◽  
G. Santos de Lima ◽  
N. Lima Tresena ◽  
...  

Freezing is one the most efficient methods for conservation, especially, fruits and vegetables. Cashew is a fruit with high nutritional value and great economic importance in the Northeast region of Brazil, however, due to high moisture content, it is highly perishable. The numerical study of the freezing process is of great importance for the optimization of the process. In this sense, the objective of this work was to study the cooling and freezing processes of cashew apple using computational fluid dynamics technique. Experiments of cooling and freezing of the fruit, with the aid of a refrigerator,data acquisition system and thermocouples, and simulation using Ansys CFX® software for obtain the cooling and freezing kinetics of the product were realized. Results of the cooling and freezing kinetics of the cashew apple and temperature distribution inside the cashew apple are presented, compared and analyzed. The model was able to predict temperaturetransient behavior with good accuracy, except in the post-freezing period.


Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 118839
Author(s):  
Shiliang Yang ◽  
Ruihan Dong ◽  
Yanxiang Du ◽  
Shuai Wang ◽  
Hua Wang

Author(s):  
Rajnish K. Calay ◽  
Arne E. Holdo

The Computational Fluid Dynamics (CFD) is now increasingly being used for modeling industrial flows, i.e. flows which are multiphase and turbulent. Numerical modeling of flows where momentum, heat and mass transfer occurs at the interface presents various difficulties due to the wide range of mechanisms and flow scenarios present. This paper attempts to provide a summary of available mathematical models and techniques for two-phase flows. Some comments are also made on the models available in the commercially available codes.


Author(s):  
Utku Gülan ◽  
Diego Gallo ◽  
Raffaele Ponzini ◽  
Beat Lüthi ◽  
Markus Holzner ◽  
...  

The complex hemodynamics observed in the human aorta make this district a site of election for an in depth investigation of the relationship between fluid structures, transport and pathophysiology. In recent years, the coupling of imaging techniques and computational fluid dynamics (CFD) has been applied to study aortic hemodynamics, because of the possibility to obtain highly resolved blood flow patterns in more and more realistic and fully personalized flow simulations [1]. However, the combination of imaging techniques and computational methods requires some assumptions that might influence the predicted hemodynamic scenario. Thus, computational modeling requires experimental cross-validation. Recently, 4D phase contrast MRI (PCMRI) has been applied in vivo and in vitro to access the velocity field in aorta [2] and to validate numerical results [3]. However, PCMRI usually requires long acquisition times and suffers from low spatial and temporal resolution and a low signal-to-noise ratio. Anemometric techniques have been also applied for in vitro characterization of the fluid dynamics in aortic phantoms. Among them, 3D Particle Tracking Velocimetry (PTV), an optical technique based on imaging of flow tracers successfully used to obtain Lagrangian velocity fields in a wide range of complex and turbulent flows [4], has been very recently applied to characterize fluid structures in the ascending aorta [5].


2017 ◽  
Vol 34 (4) ◽  
pp. 969-976 ◽  
Author(s):  
Taleb Zarei ◽  
Ehsan Abedini ◽  
Rahbar Rahimi ◽  
Jamshid Khorshidi

Author(s):  
Q Wu ◽  
Q Ye ◽  
G X Meng

This article introduces a new vortex gripper with a diversion body. Vortex gripper, as a pneumatic non-contact handling device, can generate lifting force to hold a workpiece without any contact. In order to predict the characteristics of this new vortex gripper, including pressure distribution on the upper surface of the workpiece, lifting force, supporting stiffness, and flowrate, a computational fluid dynamics study has been carried out. In the vortex cup, air swirling flow is a complex turbulent one; so Reynolds stress model (RSM) was used to describe internal air swirling flow. In addition, an experiment was carried out to study the characteristics of the vortex gripper. When compared with the experimental results, the reliability of numerical simulation results by RSM was verified. The vortex gripper with a diversion body could generate greater lifting force when compared with those designed by Xin et al. with the same air consumption. Therefore, the efficiency of the vortex gripper is improved.


Sign in / Sign up

Export Citation Format

Share Document