The Effect of High Pressure Abrasive Water Jet Cutting Parameters on Cutting Performance of Granite

2006 ◽  
Vol 304-305 ◽  
pp. 560-564 ◽  
Author(s):  
Chuan Zhen Huang ◽  
Rong Guo Hou ◽  
Jun Wang ◽  
Yan Xia Feng

The effect of cutting parameters such as water pressure, nozzle traverse speed and standoff distance on the granite cutting performance as characterized by kerf width, kerf taper, and striation drag angle are researched with a series of experiments using garnetabrasive and ultra high pressure abrasive water jet numerical control machine tool. The relationship between system pressure and abrasive mass flow rate is also studied. The research results show that the abrasive mass flow rate is only proportional to water pressure and the effect of other cutting parameters is not significant. It is found that an increase in water pressure is associated with an increased kerf width and a decreased kerf taper. The kerf width decreases with the enhancement of nozzle traverse speed, and resulting in a significant increase in kerf taper as the nozzle traverse speed increases. The kerf width increases with the enhancement of standoff distance, and hence it causes a significant increase in kerf taper at the standoff distance domain from 3mm to 4mm and then a little decrease in kerf taper at the standoff distance increasing from 4mm to 5mm. The striation drag angle decreases with an increase in water pressure and a decrease in nozzle traverse speed.

Author(s):  
Puneet Kumar ◽  
Ravi Kant

The present paper describes an experimental study of abrasive water jet machining (AWJM) of Kevlar epoxy composite. Influence of process parameters namely stand-off distance, water pressure, traverse speed and abrasive mass flow rate on surface roughness and kerf taper is investigated. Taguchi orthogonal approach is applied to plan the design of experiments; and subsequent analysis of experimental data is done using analysis of variance (ANOVA). It is found that water pressure and traverse speed are most significant parameters followed by stand-off distance and abrasive mass flow rate influencing surface roughness and kerf taper. With increase in water pressure and decrease in traverse speed, kerf taper and surface roughness decreases.


2014 ◽  
Vol 599-601 ◽  
pp. 555-559
Author(s):  
Iman Zohourkari ◽  
Mehdi Zohoor ◽  
Massimiliano Annoni

In this paper, surface waviness quality in abrasive waterjet offset-mode turning has been studied regarding variations of some process parameters. Influence of five main operational parameters such as water pressure, cutting head traverse speed, abrasive mass flow rate, workpiece rotational speed and depth of cut on surface waviness of turned parts have been investigated using statistical approach. Second order regression model presented for surface waviness. The model accuracy was verified by comparing with experimental data. It found that abrasive mass flow rate, cutting head traverse speed and DOC are the most influential parameters while water pressure and workpiece rotational speed show lesser effectiveness.


2014 ◽  
Vol 621 ◽  
pp. 202-207
Author(s):  
Iman Zohourkari ◽  
Mehdi Zohoor ◽  
Massimiliano Annoni

In this paper, surface waviness produced by turning aluminum parts with abrasive waterjet has been studied regarding changes in some process parameters. Effect of five major parameters such as water pressure, cutting head traverse speed, abrasive mass flow rate, workpiece rotational speed and depth of cut have been investigated using analysis of variances. Second order regression model presented forwaviness.The validity of the model wasconfirmed bycomparing with experimental data. It found thatabrasive mass flow rate, cutting head traverse speed and DOC are the most influencing parameters while water pressure and workpiece rotational speed show lesser effectiveness.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5471
Author(s):  
Kumari Bimla Mardi ◽  
Amit Rai Dixit ◽  
Alokesh Pramanik ◽  
Pavol Hvizdos ◽  
Ashis Mallick ◽  
...  

This study investigated the effect of abrasive water jet kinematic parameters, such as jet traverse speed and water pressure, on the surface of magnesium-based metal matrix nanocomposites (Mg-MMNCs) reinforced with 50 nm (average particle size) Al2O3 particles at concentrations of 0.66 and 1.11 wt.%. The extent of grooving caused by abrasive particles and irregularities in the abrasive waterjet machined surface with respect to traverse speed (20, 40, 250 and 500 mm/min), abrasive flow rate (200 and 300 g/min) and water pressure (100 and 400 MPa) was investigated using surface topography measurements. The results helped to identify the mode of material disintegration during the process. The nanoindentation results show that material softening was decreased in nanocomposites with higher reinforcement content due to the presence of a sufficient amount of nanoparticles (1.11 wt.%), which protected the surface from damage. The values of selected surface roughness profile parameters—average roughness (Ra), maximum height of peak (Rp) and maximum depth of valleys (Rv)—reveal a comparatively smooth surface finish in composites reinforced with 1.11 wt.% at a traverse speed of 500 mm/min. Moreover, abrasive waterjet machining at high water pressure (400 MPa) produced better surface quality due to sufficient material removal and effective cleaning of debris from the machining zone as compared to a low water pressure (100 MPa), low traverse speed (5 mm/min) and low abrasive mass flow rate (200 g/min).


2021 ◽  
Author(s):  
Isam Qasem ◽  
Ahmed Hussien ◽  
Pramodkumar S. Kataraki ◽  
Ayub Ahmed Janvekar

Abstract Advanced machining techniques are extensively being adopted for machining of high strength materials such as stainless steels. However, these materials are difficult to be machined out due to properties such as high work hardening rate and low thermal conductivity, work hardening and poor machinability. The manufacturing requirements such as production of high precision and surface finished components has led the researchers to study abrasive water jet (AWJ) machining and its applications in industrial sectors. As the AWJ is multi-operational and can produce high precision components. The carried-out work mainly intended to involve technical parameters such as water pressure, cutting speed, abrasive flow. These parameters were analyzed with respect to kerf taper and surface roughness on 304 stainless steel. Two critical variables namely cutting speed and outlet pressure were varied from 100 to 200 mm /min and 100 to 200 MPa, respectively. In additional based on the setup flow rate was altered from 360 to 540 g/min. The experimental results indicate kerf taper and surface roughness were strongly deflect by varying cutting rate, water pressure, and flow rate. Optimization of process parameter was performed by adopting response surface methodology as well as central composite design method. Finally, mathematical models and set of contour graphs for tested surface quality along the kerf taper angle was carried out using ANOVA analysis.


2017 ◽  
Vol 51 (24) ◽  
pp. 3373-3390 ◽  
Author(s):  
Ajit Dhanawade ◽  
Shailendra Kumar

The present article focuses on mechanism of delamination and kerf geometry in abrasive water jet machining of carbon epoxy composite. In the present study, four process parameters of abrasive water jet machining namely hydraulic pressure, traverse rate, stand-off distance, and abrasive mass flow rate are considered. The experiments are performed on the basis of response surface methodology as a statistical design of experiment approach. Delamination in machined samples is observed by using scanning electron microscope. Analysis of variance is performed in order to investigate the influence of process parameters on delamination, kerf taper ratio, and kerf top width. It is found that delamination decreases with increase in pressure and abrasive mass flow rate and decrease in stand-off distance and traverse rate. Kerf taper ratio decreases with increase in pressure and decrease in traverse rate and stand-off distance. Kerf top width decreases with decrease in stand-off distance and increase in traverse rate. Based on analysis, mathematical models are developed to predict the maximum delamination length, kerf taper ratio, and kerf top width. Further, a multi-response optimization is performed on the basis of desirability function to minimize delamination, kerf taper ratio, and kerf top width.


2018 ◽  
Author(s):  
Vivek Singhal ◽  
Pradeep Ashok ◽  
Eric van Oort ◽  
Paul Park

2019 ◽  
Vol 27 (03) ◽  
pp. 1950112 ◽  
Author(s):  
A. SHANMUGAM ◽  
K. KRISHNAMURTHY ◽  
T. MOHANRAJ

Surface roughness and taper angle of an abrasive waterjet machined surface of 7075 Aluminum metal matrix composite were deliberately studied. Response surface methodology design of experiments and analysis of variance were used to design the experiments and to identify the effect of process parameters on surface roughness and taper angle. The jet traverse speed and jet pressure were the most significant process parameters which influence the surface roughness and taper angle, respectively. Increasing the pressure and jet traverse speed results in increasing the surface roughness and taper angle. At the same time, decreasing the standoff distance and jet traverse speed possibly enhances both the responses. The optimal process parameters of 1[Formula: see text]mm as standoff distance, 192[Formula: see text]MPa as water pressure and 30[Formula: see text]mm[Formula: see text]min[Formula: see text] as jet traverse speed were identified to obtain the minimum value of surface roughness and taper angle. Based on the optimal parameters, the confirmation test was conducted. The mathematical equation was obtained from the experimental data using regression analysis; it was observed that the error was less than 5% of the experimentally measured values.


2019 ◽  
Vol 895 ◽  
pp. 301-306
Author(s):  
Keshav Kashyap ◽  
S. Srinivas

This study evaluates the effect of process parameters on depth of penetration and surface roughness in abrasive waterjet (AWJ) cutting of copper. Full factorial experiments are carried out on trapezoidal blocks for each of the three abrasive particle sizes used. Experimental parameters - abrasive mass flow rate, water jet pressure and traverse speed are varied at three levels. Main effects and contributions of process parameters to depth of penetration and surface roughness is calculated. From the data, it is observed that, high abrasive mass flow rate, high water jet pressure and low traverse speed resulted in higher depth of penetration and a high abrasive mass flow rate, high water jet pressure and low traverse speed resulted in lesser Ra value. Using experimental data a statistical model for predicting depth of penetration & surface roughness is developed. Error between experimental and statistical values are compared to validate the statistical model. The maximum DOP of 49.32mm was observed at AMFR=405.4 g/min, P=300 MPa, TS=60 mm/min, MS=60 Mesh and minimum DOP of 4.27mm was observed at AMFR=200 g/min, P=100 MPa, TS=90 mm/min, MS=80 Mesh.


2014 ◽  
Vol 77 (1-4) ◽  
pp. 763-774 ◽  
Author(s):  
Pavol Hreha ◽  
Agáta Radvanská ◽  
Sergej Hloch ◽  
Vincent Peržel ◽  
Grzegorz Królczyk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document