Performance of Cutting Parameters for Surface Excellence on 304 Stainless Steel Using Abrasive Water Jet Technique

Author(s):  
Isam Qasem ◽  
Ahmed Hussien ◽  
Pramodkumar S. Kataraki ◽  
Ayub Ahmed Janvekar

Abstract Advanced machining techniques are extensively being adopted for machining of high strength materials such as stainless steels. However, these materials are difficult to be machined out due to properties such as high work hardening rate and low thermal conductivity, work hardening and poor machinability. The manufacturing requirements such as production of high precision and surface finished components has led the researchers to study abrasive water jet (AWJ) machining and its applications in industrial sectors. As the AWJ is multi-operational and can produce high precision components. The carried-out work mainly intended to involve technical parameters such as water pressure, cutting speed, abrasive flow. These parameters were analyzed with respect to kerf taper and surface roughness on 304 stainless steel. Two critical variables namely cutting speed and outlet pressure were varied from 100 to 200 mm /min and 100 to 200 MPa, respectively. In additional based on the setup flow rate was altered from 360 to 540 g/min. The experimental results indicate kerf taper and surface roughness were strongly deflect by varying cutting rate, water pressure, and flow rate. Optimization of process parameter was performed by adopting response surface methodology as well as central composite design method. Finally, mathematical models and set of contour graphs for tested surface quality along the kerf taper angle was carried out using ANOVA analysis.

Author(s):  
Puneet Kumar ◽  
Ravi Kant

The present paper describes an experimental study of abrasive water jet machining (AWJM) of Kevlar epoxy composite. Influence of process parameters namely stand-off distance, water pressure, traverse speed and abrasive mass flow rate on surface roughness and kerf taper is investigated. Taguchi orthogonal approach is applied to plan the design of experiments; and subsequent analysis of experimental data is done using analysis of variance (ANOVA). It is found that water pressure and traverse speed are most significant parameters followed by stand-off distance and abrasive mass flow rate influencing surface roughness and kerf taper. With increase in water pressure and decrease in traverse speed, kerf taper and surface roughness decreases.


2020 ◽  
Vol 62 (9) ◽  
pp. 957-961
Author(s):  
Nursel Altan Özbek ◽  
Metin İbrahim Karadag ◽  
Onur Özbek

Abstract This paper presents the effect of cutting tool, cutting speed and feed rate on the flank wear and surface roughness of austenitic stainless steel (AISI 304) during wet turning. Turning tests were designed based on the Taguchi method (L18). An orthogonal array, the signal-to-noise ratio (S/N) and the ANOVA were used to investigate the machinability of AISI 304 stainless steel with PVD and CVD coated tungsten carbide inserts. As a result of ANOVA, it was found that the feed rate was the most effective parameter on both flank wear and surface roughness.


2006 ◽  
Vol 304-305 ◽  
pp. 560-564 ◽  
Author(s):  
Chuan Zhen Huang ◽  
Rong Guo Hou ◽  
Jun Wang ◽  
Yan Xia Feng

The effect of cutting parameters such as water pressure, nozzle traverse speed and standoff distance on the granite cutting performance as characterized by kerf width, kerf taper, and striation drag angle are researched with a series of experiments using garnetabrasive and ultra high pressure abrasive water jet numerical control machine tool. The relationship between system pressure and abrasive mass flow rate is also studied. The research results show that the abrasive mass flow rate is only proportional to water pressure and the effect of other cutting parameters is not significant. It is found that an increase in water pressure is associated with an increased kerf width and a decreased kerf taper. The kerf width decreases with the enhancement of nozzle traverse speed, and resulting in a significant increase in kerf taper as the nozzle traverse speed increases. The kerf width increases with the enhancement of standoff distance, and hence it causes a significant increase in kerf taper at the standoff distance domain from 3mm to 4mm and then a little decrease in kerf taper at the standoff distance increasing from 4mm to 5mm. The striation drag angle decreases with an increase in water pressure and a decrease in nozzle traverse speed.


2017 ◽  
Vol 20 (3) ◽  
pp. 101-107 ◽  
Author(s):  
V. Senthilkumar ◽  
G. Jayaprakash

Laser cutting is the popular unconventional manufacturing method widely used to cut various engineering materials. In this work CO2 laser cutting of AISI 314 satinless steel has been investigated. This paper focus on the investigation into the effect of laser cutting parameters like laser power, assist gas pressure, cutting speed and stand-off distance on surface roughness, hardness and kerf dimensions like kerf width, kerf ratio and kerf taper in CO2 laser cutting of AISI 314 stainless steel.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2013 ◽  
Vol 652-654 ◽  
pp. 2134-2139
Author(s):  
Hyo Ryeol Lee ◽  
Yong Sik Cho ◽  
Hwa Young Kim ◽  
Jung Hwan Ahn

It is well known that abrasive water jet(AWJ) was developed as a kind of high-density energy processing technologies. AWJ is used to obtain cutting quality of various materials such as metal, ceramics, glass and composite materials within a short manufacturing time because of the characteristics of heatless and noncontact processing. However, surface roughness and dimension error like round, burr, taper depend on the cutting conditions such as pump pressure, cutting speed, orifice diameter, stand off distance, abrasive flow rate and workpiece. In this paper, the effect of the shape of mixing chamber on surface quality is studied. Parabolic mixing chamber is proposed and performance is compared to that of cylindrical mixing chamber by experiment. The surface roughness was improve 0.15㎛ to 2.29㎛ and the taper angle was improve 0.0716° to 0.143° by parabolic mixing chamber.


2013 ◽  
Vol 393 ◽  
pp. 194-199 ◽  
Author(s):  
A.K.M. Nurul Amin ◽  
Muammer Din Arif ◽  
Noor Hawa B. Mohamad Rasdi ◽  
Khairus Syakirah B. Mahmud ◽  
Abdul Hakam B. Ibrahim ◽  
...  

Thermal or heat assisted machining is used to machine hard and difficult-to-machine materials such as Inconel and Titanium alloys. The main concept is that localized surface heating of the work-piece reduces the yield strength of the material significantly, making it amenable to plastic deformation and machining. Thus, heat assisted machining has been used for over a century. However, the heating technique and temperature are very much dependent on the type of working material. Therefore, a multitude of heating techniques has been applied over the years including Laser Assisted Machining (LAM) and Plasma Enhanced Machining (PEM) in the industry. But such processes are very expensive and have not been found in wide scale applications. The authors of the current research have therefore looked into the application of a simple Tungsten Inert Gas (TIG) welding setup to perform heat assisted turning of AISI 304 Stainless Steel. Such welding equipment is relatively cheap and available. Also, stainless steel is perennially used in the industry for high strength applications. Hence, it is very important to determine with optimal cutting temperature when applying a TIG setup for heat assisted machining of stainless steel. This paper describes three separate techniques for determining the optimum temperature. All three processes applied the same experimental setup but used different variables for evaluating the best temperature. The first process used vibration amplitude reduction with increment in temperature to identify the desired temperature. The second process used chip shrinkage coefficient to locate the same temperature. And finally, the third process investigated tool wear as a criterion for determining the optimum temperature. In all three cases the three primary cutting parameters: cutting speed, feed, and depth of cut, were varied in the same pattern. The results obtained from all three approaches showed that 450oC was undoubtedly the best temperature for heat assisted machining of stainless steel.


2016 ◽  
Vol 840 ◽  
pp. 315-320 ◽  
Author(s):  
Afifah Mohd Ali ◽  
Norazharuddin Shah Abdullah ◽  
Manimaran Ratnam ◽  
Zainal Arifin Ahmad

The purpose of this research is to find the effects of cutting speed on the performance of the ZTA ceramic cutting tool. Three types of ZTA tools used in this study which are ZTA-MgO(micro), ZTA-MgO(nano) and ZTA-MgO-CeO2. Each of them were fabricated by wet mixing the materials, then dried at 100°C before crushed into powder. The powder was pressed into rhombic shape and sintered at 1600°C at 4 hours soaking time to yield dense body. To study the effect of the cutting speed on fabricated tool, machining was performed on the stainless steel 316L at 1500 to 2000 rpm cutting speed. Surface roughness of workpiece was measured and the tool wears were analysed by using optical microscope and Matlab programming where two types of wear measured i.e. nose wear and crater wear. Result shows that by increasing the cutting speed, the nose wear and crater wear increased due to high abrasion. However, surface roughness decreased due to temperature rise causing easier chip formation leaving a good quality surface although the tool wear is increased.


Author(s):  
Jamil Abdo ◽  
Kambiz Farhang ◽  
Glenn Meinhardt

Abstract A 2k factorial experiment is performed to ascertain the effect of four factors and their cross influence on friction between dry surfaces. The factors in this study include materials Young’s modulus, applied normal load, surface roughness and relative surface speed. For each combination of factors four replicates in addition to two center points are used to obtain an average coefficient of friction for dry contact. In the experiment 304 Stainless Steel and Alloy 6061 Aluminum are employed to provide the high and low levels of Young’s modulus. Results suggest that Young’s modulus has the most significant influence followed by velocity/modulus cross-coupling, surface roughness, load, and modulus/roughness. Analyses are carried out separately for the 304 Stainless Steel and alloy 6061 Aluminum to remove the effect of Young’s modulus. The results are used to obtain iso-friction curves that serve to establish force-speed control for prevention of stick-slip vibration.


Sign in / Sign up

Export Citation Format

Share Document