Biocompatibility and Osteoconductivity of Hydroxyapatite/Polysaccharide Nanocomposite Microparticles

2006 ◽  
Vol 309-311 ◽  
pp. 561-564 ◽  
Author(s):  
H. Omi ◽  
Soichiro Itoh ◽  
Toshiyuki Ikoma ◽  
Y. Asou ◽  
S. Nishikawa ◽  
...  

Hydroxyapatite/hyaluronic acid (HAp/HyA) and hydroxyapatite/chondroitin sulfate (HAp/ChS) microparticles, which show the high adsorption ability of proteins, high biocompatibility and osteoconductivity, are potential scaffolds for a time-controlled BMP release. The present study evaluated the biocompatibility and osteoconductivity of the composites after injection into bone defect. Drilled bone holes were made at tibia and femur of Japanese white rabbits, and HAp/HyA or HAp/ChS was implanted into each bone hole using an injection syringe. After 2 and 4 weeks of implantation, rabbits were sacrificed and histological observations were conducted with HE, TRAP, and ALP staining. Histological observations revealed that HAp/ChS has superior biocompatibility compared with HAp/HyA, and 20% HAp/ChS promotes bone formation as well as osteoblast activities compared with lower ratios of HAp/ChS.

1997 ◽  
Vol 77 (4) ◽  
pp. 715-721 ◽  
Author(s):  
H. H. Sunwoo ◽  
L. Y. M. Sim ◽  
T. Nakano ◽  
R. J. Hudson ◽  
J. S. Sim

The emerging wapiti industry in North America is based largely on markets for velvet antlers which are used in oriental medicine. Despite the economic opportunity, enthusiasm has been dampened by incomplete understanding of the chemical and pharmacological properties of velvet antler. This study characterizes polysaccharide constituents of glycosaminoglycans in growing antler of wapiti (Cervus elaphus). Glycosaminoglycans were isolated from four sections (tip, upper, middle and base) of growing antlers, and were studied using cellulose acetate electrophoresis, gel electrophoresis, enzymatic digestion and gel chromatography. The tip and upper sections of the antler which are rich in cartilaginous tissues contained chondroitin sulfate as a major glycosaminoglycan with small amounts of hyaluronic acid. In the middle and base sections containing bone and bone marrow, chondroitin sulfate was also a major glycosaminoglycan with small amounts of hyaluronic acid and chondroitinase-ACI resistant materials. More than half of chondroitin sulfate from the middle and base sections had larger molecular size than did the chondroitin sulfates from the tip and upper sections. Key words: Glycosaminoglycans, chondroitin sulfate, antler, wapiti


2005 ◽  
Vol 16 (2) ◽  
pp. 213-224 ◽  
Author(s):  
Byung Chae Cho ◽  
Tae Gyu Kim ◽  
Jung Duk Yang ◽  
Ho Yun Chung ◽  
Jae Woo Park ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (85) ◽  
pp. 45244-45250 ◽  
Author(s):  
Yun Meng ◽  
Liyuan Zhang ◽  
Liyuan Chai ◽  
Wanting Yu ◽  
Ting Wang ◽  
...  

PmPD nanobelts with high adsorption performance have been synthesized by using CTAP as oxidants.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1993 ◽  
Author(s):  
Kunio Ishikawa ◽  
Youji Miyamoto ◽  
Akira Tsuchiya ◽  
Koichiro Hayashi ◽  
Kanji Tsuru ◽  
...  

Three commercially available artificial bone substitutes with different compositions, hydroxyapatite (HAp; Neobone®), carbonate apatite (CO3Ap; Cytrans®), and β-tricalcium phosphate (β-TCP; Cerasorb®), were compared with respect to their physical properties and tissue response to bone, using hybrid dogs. Both Neobone® (HAp) and Cerasorb® (β-TCP) were porous, whereas Cytrans® (CO3Ap) was dense. Crystallite size and specific surface area (SSA) of Neobone® (HAp), Cytrans® (CO3Ap), and Cerasorb® (β-TCP) were 75.4 ± 0.9 nm, 30.8 ± 0.8 nm, and 78.5 ± 7.5 nm, and 0.06 m2/g, 18.2 m2/g, and 1.0 m2/g, respectively. These values are consistent with the fact that both Neobone® (HAp) and Cerasorb® (β-TCP) are sintered ceramics, whereas Cytrans® (CO3Ap) is fabricated in aqueous solution. Dissolution in pH 5.3 solution mimicking Howship’s lacunae was fastest in CO3Ap (Cytrans®), whereas dissolution in pH 7.3 physiological solution was fastest in β-TCP (Cerasorb®). These results indicated that CO3Ap is stable under physiological conditions and is resorbed at Howship’s lacunae. Histological evaluation using hybrid dog mandible bone defect model revealed that new bone was formed from existing bone to the center of the bone defect when reconstructed with CO3Ap (Cytrans®) at week 4. The amount of bone increased at week 12, and resorption of the CO3Ap (Cytrans®) was confirmed. β-TCP (Cerasorb®) showed limited bone formation at week 4. However, a larger amount of bone was observed at week 12. Among these three bone substitutes, CO3Ap (Cytrans®) demonstrated the highest level of new bone formation. These results indicate the possibility that bone substitutes with compositions similar to that of bone may have properties similar to those of bone.


2019 ◽  
Vol 16 (5) ◽  
pp. S75-S76
Author(s):  
C. Schiraldi ◽  
A. Stellavato ◽  
A. V. Adriana Pirozzi ◽  
P. Diana ◽  
G. Donnarumma ◽  
...  

2021 ◽  
Author(s):  
gan zhang ◽  
Xiaosong Chen ◽  
Xunsheng Cheng ◽  
Xiuwu Ma ◽  
Congcong Chen

Abstract Introduction: The experiment was undertaken to estimate the effect of BMSCs seeding in different scaffold incorporation with HBO on the repair of seawater immersed bone defect. And future compared n-HA/PLGA with β-TCP/PLGA as scaffold in treatment effect of seawater immersed bone defect.Methods: 60 New Zealand White rabbits with standard seawater defect in radius were randomly divided to group A (implant with nothing), group B (implanted with atuogenous bone), group C (implanted with n-HA/PLGA/BMSCs, and Group D ( implanted with β-TCP/PLGA/BMSCs). After implant, each rabbit receive HBO treatment at 2.4 ATA 100% oxygen for 120 minutes per day for 2 weeeks. Radiograph, histological and biomechanical examination were used to analyze osteogenesis.Result: X-ray analysis show that n-HA/PLGA/BMSCs and β-TCP/PLGA/BMSCs could accelerate the new bone formation, and the new bone formation in group C was lager than in group D or group A, and close to group B (P<0.05). After 12 weeks, in group A, defect without scaffold show a loose connect tissue filled in the areas. The medullary canal in group B was recanalizated. Defect in group C and D show a larger number of wove bone formation. The new wove bone formation in defect areas in group C was lager than D. The mechanical examination revealed ultimate strength at 12 weeks were group D>group C>group B>group A(P<0.05).Conclusion: Scaffold of n-HA/PLGA and β-TCP/PLGA incorporation with HBO and BMSCs were effective to treat seawater immersed bone defect, and n-HA/PLGA was more excellent than β-TCP/PLGA.


Sign in / Sign up

Export Citation Format

Share Document