Ultrasonic Characterization of Residual Stress in Shot Peened AI 7075 Alloy Using Acoustic Signature

2006 ◽  
Vol 321-323 ◽  
pp. 1475-1478 ◽  
Author(s):  
C.S. Kim ◽  
Dong Su Cho ◽  
Ik Keun Park

We attempted to estimate the residual stress which evolved during the shot peening of Al 7075 alloy using leaky surface acoustic wave (LSAW). Shot peening was conducted to produce a variation in the compressive residual stress with the depth from the surface at a shot velocity of 30m/s. The LSAW velocity was measured using a scanning acoustic microscopy (SAM). The Vickers hardness profile obtained inwards from the surface showed significant work hardening of the near surface layer with a thickness of about 0.3mm. The variation in the LSAW velocity through the shot peened surface layer was in good agreement with the distribution of the residual stress measured by X-ray diffraction.

2013 ◽  
Vol 768-769 ◽  
pp. 550-556 ◽  
Author(s):  
Ke Zhan ◽  
Chuan Hai Jiang ◽  
Henry Pan

Shot peening is an important surface treatment which can induce compressive residual stress and refine micro-structure in the deformed surface layer. In this paper, the conventional shot peening, dual shot peening and triple shot peening have been applied to S30432 austenitic stainless steel. The residual stress and micro-structure in the deformed layer were investigated by X-ray diffraction method. The results revealed that a compressive residual stress field was induced in the deformed layer for all shot peening conditions. As the shot peening step increased, the compressive residual stresses increased in near surface layer, and then deceased faster in deeper deformed layer. In terms of microstructure, the domain size increased, while the micro-strain decreased with the depth increasing in the deformed layer. Compare with the effect of three different shot peening method, triple shot peenng is more effective to optimize the compressive residual stress, microstructure and micro-hardness of S30432 austenitic stainless steel.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1262 ◽  
Author(s):  
Michal Jambor ◽  
Libor Trško ◽  
Jan Klusák ◽  
Stanislava Fintová ◽  
Daniel Kajánek ◽  
...  

The severe shot peening process was applied to the notched specimens from an AW 7075 alloy with the aim to improve fatigue endurance in the very-high cycle fatigue region. To reveal the stress state in the notch vicinity, finite element analysis was performed, simulating the conditions of the used 20 kHz ultrasonic fatigue loading. Modified surface characteristics by the severe shot peening process were analyzed in terms of residual stress distribution measured by X-ray diffraction methods and near-surface microstructural observations by scanning electron microscopy. The applied severe shot peening increased the fatigue limit by 11%; however, the positive effect was recorded only for the loading amplitudes corresponding to the fatigue lifetimes in the range 107–109 cycles. At higher loading amplitudes, the fatigue properties tended to decrease, most likely due to accelerated fatigue crack initiation on the surface damage features created by the peening process and also by rapid residual stress relaxation.


2013 ◽  
Vol 768-769 ◽  
pp. 519-525 ◽  
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

The paper deals with the effect of different shot peening (SP) treatment conditions on the ENAW 7075-T651 aluminium alloy. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. The objective of the research was to establish the optimal parameters of the shot peening treatment of the aluminium alloy in different precipitation hardened states with regard to residual stress profiles in dynamic loading. Main deformations and main residual stresses were calculated on the basis of electrical resistance. The resulting residual stress profiles reveal that stresses throughout the thin surface layer of all shot peened specimens are of compressive nature. The differences can be observed in the depth of shot peening and the profile of compressive residual stresses. Under all treatment conditions, the obtained maximum value of compressive residual stress ranges between -200 MPa and -300 MPa at a depth between 250 μm and 300 μm. Comparison of different temperature-hardened aluminium alloys shows that changes in the Almen intensity values have greater effect than coverage in the depth and profile of compressive residual stresses. Positive stress ratio of R=0.1 was selected. Wöhler curves were determined in the areas of maximum bending loads between 30 - 65 % of material's tensile strength, measured at thinner cross-sections of individual specimens. The results of material fatigue testing differ from the level of shot peening on the surface layer.


2004 ◽  
Vol 843 ◽  
Author(s):  
Hideo Mano ◽  
Kondo Satoru ◽  
Akihito Matsumuro ◽  
Toru Imura

ABSTRACTThe shot peening process is known to produce a hard layer, known as the white layer” on the surface of coil springs. However, little is known about the fatigue properties of this white-layer.In this study, coil springs with a white-layer were manufactured. The surface of these springs was then examined using micro Vickers hardness, FE-SEM etc. to test fatigue strength of the springs.From the results obtained, a microstructure of the white-layer with grain size of 50–100 nm was observed, with a Vickers hardness rating of 8–10 GPa.Tow category springs were manufactured utilizing a double-peening process. These springs had the same residual stress destruction and surface roughness. Only one difference was observed: one spring had a nanocrystalline layer on the surface, while the other did not. The results of the fatigue test realized an increase in the fatigue life of the nanocrystalline surface layer by 9%.


2013 ◽  
Vol 433-435 ◽  
pp. 1898-1901
Author(s):  
Li Juan Cao ◽  
Shou Ju Li ◽  
Zi Chang Shangguan

Shot peening is a manufacturing process intended to give components the final shape and to introduce a compressive residual state of stress inside the material in order to increase fatigue life. The modeling and simulation of the residual stress field resulting from the shot peening process are proposed. The behaviour of the peened target material is supposed to be elastic plastic with bilinear characteristics. The results demonstrated the surface layer affected by compressive residual stresses is very thin and the peak is located on the surface.


2010 ◽  
Vol 426-427 ◽  
pp. 537-539 ◽  
Author(s):  
Hong Miao ◽  
Dun Wen Zuo ◽  
Hong Feng Wang ◽  
X.W. Sha

Shot peening is known to improve the fatigue performance of materials. The improvement in fatigue is that plastic deformation in the surface increases hardness, yield stress and microstrain of thinning Crystal block and dislocation density, and formed advantaged compress residual stress that are introduced into the near-surface of the components and which hinder crack initiation and growth. But over peening effect is produced when shot peening strengthening goes beyond a certain limit, which was adverse to improve surface quality. This paper adopted the optimization of the critical peening parameters to avoid appearing over peening effect. The experimental result showed that arc high value of optimal shot peening was 0.40mm.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3635 ◽  
Author(s):  
Agnieszka Skoczylas ◽  
Kazimierz Zaleski

This article presents the results of experimental studies of the impact of centrifugal shot peening parameters on the roughness, microstructure, and microhardness of the surface layer of laser-cut C45 steel parts. Residual stress distributions and the presence of iron oxides on the surface of these elements were also examined. Centrifugal shot peening tests were performed on an FV-580a vertical machining center while using a specially designed peening head. The parameters that were varied during centrifugal shot peening included tangential speed of the tool vg and feed rate vf. The use of centrifugal shot peening for finish machining of laser-cut C45 steel parts allowed for obtaining a four-fold reduction in the surface roughness parameters Ra and Rz. As a result of shot peening, the geometrical structure of the surface of the steel parts was modified and it acquired new beneficial features, such as large values of the rounding radii of the micropeaks and high material ratios (Rmrmax = 92%). At the same time, the surface layer was hardened (microhardness increased by 16%) and a compressive residual stress layer was produced on the surface of the workpieces. Additionally, as the shot impacted the processed surface, combustion products were “blasted” or “sheared” off it. Shot peening using the proposed technique can be successfully performed while using CNC machines.


2005 ◽  
Vol 490-491 ◽  
pp. 396-403 ◽  
Author(s):  
Yan Huai Li ◽  
Jian Lu ◽  
Ke Wei Xu

Residual stresses distribution after shot peening and its relaxation during uni-axial loading were investigated experimentally and theoretically on stainless steel of AISI304. An analytical model was proposed based upon continuum plasticity theory and elasto-plasticity finite element (FE) analysis, in which both relaxation of shot peening induced residual stress and variation of yield strength in the surface layer were taken into consideration. The results show that the value of yield strength in surface layer is altered after shot peening, and the relaxation of residual stress takes place at the point where the combination of applied strain and residual strain exceeds the true value of yield strength. A fundamental agreement was proved between measurements and predictions in simple tension and compression.


2013 ◽  
Vol 768-769 ◽  
pp. 66-71 ◽  
Author(s):  
Diego Cecchin ◽  
Cristy Leonor Azanza Ricardo ◽  
Mirco D'Incau ◽  
Michele Bandini ◽  
Paolo Scardi

Aluminum alloy (Al-7075-T6) samples were analyzed to determine the in-depth residual stress profile induced by a shot-peening treatment. The influence of coverage degree and Almen intensity on the surface residual stress and on the sub-surface residual stress gradient was investigated. Residual stress profiles were obtained using three different techniques: (i) standard laboratory X-ray diffraction (XRD) residual stress analysis with progressive chemical layer-removal; (ii) XRD residual stress analysis with synchrotron radiation using different X-ray energies, thus changing the penetration depths, and (iii) Blind Hole Drilling (BHD). A comprehensive comparison of the results given by the used techniques is shown.


Sign in / Sign up

Export Citation Format

Share Document