Tensile Test of Individual Multi Walled Carbon Nanotube Using Nano-Manipulator inside Scanning Electron Microscope

2006 ◽  
Vol 326-328 ◽  
pp. 329-332 ◽  
Author(s):  
Hoon Sik Jang ◽  
Sung Hwan Kwon ◽  
Am Kee Kim ◽  
Seung Hoon Nahm

We have attempted to observe straining responses of an individual multi-walled carbon nanotube (MWNT) by performing an in-situ tensile testing inside scanning electron microscope (SEM). The both ends of an individual MWNT was attached on the rigid support and the tip of the force sensor using electron beam and was elongated by a nano-manipulator. The nano-manipulator was automatically controlled by personal computer. Linear deformation and fracture behaviors of MWNT were successfully observed and its force-displacement curve was also measured from the bending stiffness and displacement of the force sensor and manipulator. The tensile properties of individual MWNT were evaluated from the tensile test results.

2011 ◽  
Vol 25 (31) ◽  
pp. 4233-4236 ◽  
Author(s):  
HOON-SIK JANG ◽  
SEUNG HOON NAHM ◽  
JUNG HAN KIM ◽  
KYU HWAN OH

We performed the tensile test of an individual carbon nanofiber (CNF) inside a scanning electron microscope. The mechanical testing system was installed in a scanning electron microscope (SEM). The nano-manipulator was set up in the SEM, and the force sensor, which is formed as a cantilever, was mounted on the nano-manipulator. Then, the force sensor can be controlled by using the nano-manipulator. The CNFs were dispersed on the transmission electron microscope (TEM) grid, and the both end of the CNFs were welded on the TEM grid and the tip of force sensor by exposing electron-beam of the SEM. The tensile test of the CNFs was performed by controlling the nano-manipulator. The load response during the tensile test was obtained by force sensor. Stess-strain curve was obtained from force-displacement curve of CNF after tensile test. The elastic modulus of CNFs was calculated at ~12.5 GPa.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


Materials ◽  
2011 ◽  
Vol 4 (9) ◽  
pp. 1519-1527 ◽  
Author(s):  
Weifeng Li ◽  
Chaminda Jayasinghe ◽  
Vesselin Shanov ◽  
Mark Schulz

2022 ◽  
Author(s):  
Sanjeev Kumar Kanth ◽  
Anjli Sharma ◽  
Byong Chon Park ◽  
Woon Song ◽  
Hyun Rhu ◽  
...  

Abstract We have constructed a new nanomanipulator (NM) in a field emission scanning electron microscope (FE-SEM) to fabricate carbon nanotube (CNT) tip to precisely adjust the length and attachment angle of CNT onto the mother atomic force microscope (AFM) tip. The new NM is composed of 2 modules, each of which has the degree of freedom of three-dimensional rectilinear motion x, y and z and one-dimensional rotational motion θ. The NM is mounted on the stage of a FE-SEM. With the system of 14 axes in total which includes 5 axes of FE-SEM and 9 axes of nano-actuators, it was possible to see CNT tip from both rear and side view about the mother tip. With the help of new NM, the attachment angle error could be reduced down to 0º as seen from both the side and the rear view, as well as, the length of the CNT could be adjusted with the precision using electron beam induced etching. For the proper attachment of CNT on the mother tip surface, the side of the mother tip was milled with focused ion beam. In addition, electron beam induced deposition was used to strengthen the adhesion between CNT and the mother tip. In order to check the structural integrity of fabricated CNT, transmission electron microscope image was taken which showed the fine cutting of CNT and the clean surface as well. Finally, the performance of the fabricated CNT tip was demonstrated by imaging 1-D grating and DNA samples with atomic force microscope in tapping mode.


2015 ◽  
Vol 813-814 ◽  
pp. 46-50 ◽  
Author(s):  
Julias A. Arockia ◽  
Kumar N. Ram ◽  
Murali Vela

In this study the lamina properties of glass/epoxy, carbon/epoxy and kevlar/epoxy composite along their principal coordinate axes were evaluated by performing tensile test. The laminates were prepared by hand lay-up technique and compressed using a compression molding machine at 70 oc and 80 bar pressure. The test was conducted as per ASTM standard D3039 by affixing strain gauges in the specimen to obtain the longitudinal and transverse strain. The mechanism of failure was also studied by performing fractographic analysis using scanning electron microscope which shows peeled off fiber surfaces in the case of kevlar/epoxy laminate.


2004 ◽  
Vol 16 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Masahiro Nakajima ◽  
◽  
Fumihito Arai ◽  
Lixin Dong ◽  
Toshio Fukuda

A method is presented for pico-Newton (pN) order force measurement using a carbon nanotube (CNT) probe, which is calibrated by electromechanical resonance. A CNT probe is constructed by attaching a CNT to the end of a tungsten needle or an atomic force microscope (AFM) cantilever using nanorobotic manipulators inside a field-emission scanning electron microscope (FE-SEM). Conductive electron-beam-induced deposition (EBID) is used for the fixation of CNTs with an internal vaporized precursor W(CO)6. For manipulating them easily and quickly, CNTs are dispersed in ethanol by ultrasonic waves and oriented on copper electrodes by electrophoresis. The elastic moduli of CNT probes are calibrated for use as a force measurement probe by electrically exciting at fundamental frequency. We analyzed the resolution of force measurement using a CNT probe. This force measurement can be used to characterize the mechanical properties of nanostructures and to measure friction or exfoliation forces in nanometer order.


Sign in / Sign up

Export Citation Format

Share Document