Fabrication and I-V Characteristics of Nanocrystalline Titania Electrode Sensitized by Zinc Phthalocyanine

2006 ◽  
Vol 326-328 ◽  
pp. 365-368 ◽  
Author(s):  
Yu Qiao Wang ◽  
Chun Ping Liu ◽  
Kang Li ◽  
Yue Ming Sun

TiO2 colloids prepared by sol-gel method were autoclaved and then deposited onto a transparent conducting oxide substrate by screen-printing. The TiO2 films electrode was characterized by XRD, SEM, AFM and Alpha-Step profilometer and then sensitized by zinc phthalocyanine (ZnPc), 2,9,16,23-tetracarboxy zinc phthalocyanine (ZnTCPc) and ZnTCPc/lauric acid respectively. Photocurrent density (I) and photovoltage (V) of the electrode were measured with the solar simulator. The ZnTCPc-sensitized electrode was found the best performance with the short-circuit photocurrent density (Isc) 16.66 3A/cm2, the open-circuit photovoltage (Voc) 277.9 mV and the fill factor (FF) 0.39. And the ZnPc-sensitized electrode was found the worst performance with Voc 114.2 mV, Isc 2.26 3A/cm2 and FF 0.31. It was also found that lauric acid promoted Voc of the the ZnTCPc sensitized system.

2014 ◽  
Vol 787 ◽  
pp. 347-351 ◽  
Author(s):  
Chun Lin Fu ◽  
Wei Cai ◽  
Ze Bin Lin ◽  
Wei Hai Jiang

Ferroelectric is a great potential material as new solar cells, light driver and optical sensor because of its anomalous photovoltaic effect. Bismuth ferrite and Nd-doped barium titanate thin films were prepared via sol–gel spin-coating method in the present study. The experimental results show that substitution of Nd3+ ions for Ba2+ on A sites leads to the decrease of band gap, and the short circuit photocurrent density, open circuit photovoltage and power conversion efficiency of Nd-doped barium titanate thin films begin to increase and reach the maximum and then decrease as Nd content increases. It has been found that the band gap of bismuth ferrite thin films annealed at 550–650oC was between 2.306 eV and 2.453 eV. The short circuit photocurrent density decreased with the rise of annealing temperature, and the open circuit photovoltage and the power conversion efficiency of bismuth ferrite thin films annealed at 550oC were higher than the thin films annealed at higher temperature.


2018 ◽  
Vol 382 ◽  
pp. 369-373
Author(s):  
Usana Mahanitipong ◽  
Preeyapat Prompan ◽  
Rukkiat Jitchati

The four thiocyanate free ruthenium(II) complexes; [Ru(N^N)2(C^N)]PF6were synthesized and characterized for dye sensitized solar cells (DSSCs). The results showed that the broad absorptions covered the visible region from metal to ligand charge transfer (MLCT) were obtained with the main peaks at 560, 490 and 400 nm. The materials were studied DSSC performance under standard AM 1.5. Compound PP1 showed the power conversion efficiency (PCE) at 3.10%, with a short-circuit photocurrent density (Jsc) of 7.99 mA cm-2, an open-circuit photovoltage (Voc) of 563 mV and a high fill factor (ff) of 0.690.


2011 ◽  
Vol 04 (01) ◽  
pp. 21-24 ◽  
Author(s):  
ASHRAFUL ISLAM ◽  
SURYA PRAKASH SINGH ◽  
LIYUAN HAN

A thiocyanate-free Ru (II) terpyridine complex containing a tridentate chelating ligand diethylenetriamine, Ru (4,4′, 4″-tricarboxy-2,2′:6′, 2″-terpyridine)(diethylenetriamine) 1 achieves very efficient panchromatic sensitization of nanocrystalline TiO 2 solar cell over the whole visible range extending into the near IR region (ca. 900 nm) with a maximum value of 76% at around 600 nm. A solar energy to electric power conversion efficiency (η) of 7.9% was attained under standard AM 1.5 irradiation (100 mW cm-2) with a short-circuit photocurrent density (J sc ) of 17.5 mA cm-2, an open-circuit photovoltage (V oc ) of 0.67 V, and a fill factor (ff) of 0.68.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Hashem Shahroosvand ◽  
Parisa Abbasi ◽  
Mohsen Ameri ◽  
Mohammad Reza Riahi Dehkordi

The metal complexes ( (phen)2(phendione))(PF6)2(1), [ (phen)(bpy)(phendione))(PF6)2(2), and ( (bpy)2(phendione))(PF6)2(3) (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine and phendione = 1,10-phenanthroline-5,6-dione) have been synthesized as photo sensitizers for ZnO semiconductor in solar cells. FT-IR and absorption spectra showed the favorable interfacial binding between the dye-molecules and ZnO surface. The surface analysis and size of adsorbed dye on nanostructure ZnO were further examined with AFM and SEM. The AFM images clearly show both, the outgrowth of the complexes which are adsorbed on ZnO thin film and the depression of ZnO thin film. We have studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phendione complexes, which gave power conversion efficiency of (η) of 1.54% under the standard AM 1.5 irradiation (100 mW cm−2) with a short-circuit photocurrent density () of 3.42 mA cm−2, an open-circuit photovoltage () of 0.622 V, and a fill factor (ff) of 0.72. Monochromatic incident photon to current conversion efficiency was 38% at 485 nm.


2011 ◽  
Vol 239-242 ◽  
pp. 642-645 ◽  
Author(s):  
Min Yen Yeh ◽  
Dong Sing Wuu

Cu2ZnSnS4 (CZTS) prepared by sol-gel spin-coating deposition was treated with post-sulfurization in a sulfur vapor atmosphere. The crystallinity degree of the CZTS could be significantly improved through post-sulfurization treatment. Granular structures of the CZTS as synthesized at a temperature of over 240 °C and treated with post sulfurization were obtained. The composition ratios of the as-sulfurized CZTS were close to the composition stoichiometry of CZTS with an electrical resistance of ~ 1.7 Ω cm. An as-prepared CZTS based solar cell shows an open-circuit voltage of 300 mV, and a short-circuit current of 2.48 mA cm-2.


2012 ◽  
Vol 90 (12) ◽  
pp. 1048-1055
Author(s):  
Honghan Fei ◽  
Xiaojuan Fan ◽  
David L. Rogow ◽  
Scott R.J. Oliver

We report an inexpensive method using solvent-swollen poly(methyl methacrylate) as a sacrificial template for mesoporous titanium oxide thin films with tunable meso/nano morphology. The conversion efficiency reaches 4.2% despite using a solid-state electrolyte, which circumvents the longevity issues of liquid electrolytes. The cells show a large short-circuit photocurrent density of 7.98 mA, open-circuit voltage of 0.78 V, and maximum conversion efficiency of 4.2% under air-mass 1.5 global illumination. At higher titania precursor ratios, nanodisk particles are formed that increase light scattering and double the efficiency over our previous reports. The tunability of the semiconductor morphology and all solid-state nature of the cells makes the method a viable alternative to existing solar cell technology.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1227 ◽  
Author(s):  
Byung Kim ◽  
Woongsik Jang ◽  
Dong Wang

Nickel oxide (NiOx)–based perovskite solar cells (PSCs) have recently gained considerable interest, and exhibit above 20% photovoltaic efficiency. However, the reported syntheses of NiOx sol-gel used toxic chemicals for the catalysts during synthesis, which resulted in a high-temperature annealing requirement to remove the organic catalysts (ligands). Herein, we report a facile “NiOx sol-gel depending on the chain length of various solvents” method that eschews toxic catalysts, to confirm the effect of different types of organic solvents on NiOx synthesis. The optimized conditions of the method resulted in better morphology and an increase in the crystallinity of the perovskite layer. Furthermore, the use of the optimized organic solvent improved the absorbance of the photoactive layer in the PSC device. To compare the electrical properties, a PSC was prepared with a p-i-n structure, and the optimized divalent alcohol-based NiOx as the hole transport layer. This improved the charge transport compared with that for the typical 1,2-ethanediol (ethylene glycol) used in earlier studies. Finally, the optimized solvent-based NiOx enhanced device performance by increasing the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF), compared with those of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–based devices.


2013 ◽  
Vol 06 (01) ◽  
pp. 1350005 ◽  
Author(s):  
BINGWEI LUO ◽  
YUAN DENG ◽  
YAO WANG ◽  
YONGMING SHI ◽  
LILI CAO ◽  
...  

Large-scale CdS nanorod arrays have been prepared directly by a simple one-step and non-template magnetron sputtering method on different substrates. Parallel and uniform CdS nanorods with diameters ∼ 70 nm were self-assembled with (00l) orientation regardless of the substrate. The CdS nanorod arrays showed high open-circuit photovoltage, short-circuit photocurrent intensity and excellent photosensitivity properties with a switching "ON/OFF" ratio as high as 60. This study provides a simple strategy to grow CdS nanorod arrays without the constraints introduced by the substrate and opens a new potential for the application of CdS nanorod arrays in photodetectors and nanostructured solar energy conversion devices.


Sign in / Sign up

Export Citation Format

Share Document