Advanced Technologies for Estimation of Nonlinear Ultrasonic Parameter

2006 ◽  
Vol 326-328 ◽  
pp. 673-676
Author(s):  
Kyung Young Jhang ◽  
Kimio Sasaki ◽  
Job Ha ◽  
Hiroaki Tanaka

This paper proposes an advanced signal processing technique for the precise estimation of a nonlinear ultrasonic parameter, based on power spectral and bispectral analysis. The power spectrum and bispectrum estimation of the pulse-like ultrasonic signal used in the commercial SAM (scanning acoustic microscopy) equipment is especially considered in this study. The usefulness of the proposed estimation is confirmed by experiments for a Newton ring with a continuous air gap and a real semiconductor sample with local delaminations. The results show that the nonlinear parameter obtained by the proposed method had a good correlation with the delamination.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4170 ◽  
Author(s):  
Sameh Abdelazim ◽  
David Santoro ◽  
Mark Arend ◽  
Fred Moshary ◽  
Sam Ahmed

A signal processing technique utilizing autocorrelation of backscattered signals was designed and implemented in a 1.5 µm all-fiber wind sensing Coherent Doppler Lidar (CDL) system to preprocess atmospheric signals. The signal processing algorithm’s design and implementation are presented. The system employs a 20 kHz pulse repetition frequency (PRF) transmitter and samples the return signals at 400 MHz. The logic design of the autocorrelation algorithm was developed and programmed into a field programmable gate array (FPGA) located on a data acquisition board. The design generates and accumulates real time correlograms representing average autocorrelations of the Doppler shifted echo from a series of adjustable range gates. Accumulated correlograms are streamed to a host computer for subsequent processing to yield a line of sight wind velocity. Wind velocity estimates can be obtained under nominal aerosol loading and nominal atmospheric turbulence conditions for ranges up to 3 km.


2011 ◽  
Vol 22 (2) ◽  
pp. 175-189 ◽  
Author(s):  
Jeong-Seok Lee ◽  
Gyuhae Park ◽  
Chun-Gon Kim ◽  
Charles R. Farrar

This article presents a new signal-processing technique, which utilizes ‘‘relative baselines’’ instead of ‘‘pre-stored baselines,’’ for Lamb wave based SHM. Several successful SHM methods utilizing wave propagations usually involve recording baseline measurements and comparing them to a newly measured response for structural damage identification. However, maintaining an accurate database of baselines remains challenging because of the effects of varying environmental conditions. Therefore, in this study, the relative baseline concept is proposed, in which measured Lamb waves are correlated between different sensor-actuator sets, as opposed to being correlated to pre-stored baseline data. This study focuses on determining the feature best used for this relative baseline concept, and cross-correlation and power spectral density analysis techniques are performed on data sets recorded from composite and aluminum plates. Experiments are performed with these plates under the presence of temperature variations in order to demonstrate the capability of the relative baseline concept. Our experimental results clearly indicate that the proposed technique reduces the complications associated with using pre-stored baselines for SHM under varying environmental conditions, and provides a quantitative means of identifying structural damage.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2448
Author(s):  
Hongbin Lu ◽  
Chuantao Zheng ◽  
Lei Zhang ◽  
Zhiwei Liu ◽  
Fang Song ◽  
...  

The development of an efficient, portable, real-time, and high-precision ammonia (NH3) remote sensor system is of great significance for environmental protection and citizens’ health. We developed a NH3 remote sensor system based on tunable diode laser absorption spectroscopy (TDLAS) technique to measure the NH3 leakage. In order to eliminate the interference of water vapor on NH3 detection, the wavelength-locked wavelength modulation spectroscopy technique was adopted to stabilize the output wavelength of the laser at 6612.7 cm−1, which significantly increased the sampling frequency of the sensor system. To solve the problem in that the light intensity received by the detector keeps changing, the 2f/1f signal processing technique was adopted. The practical application results proved that the 2f/1f signal processing technique had a satisfactory suppression effect on the signal fluctuation caused by distance changing. Using Allan deviation analysis, we determined the stability and limit of detection (LoD). The system could reach a LoD of 16.6 ppm·m at an average time of 2.8 s, and a LoD of 0.5 ppm·m at an optimum averaging time of 778.4 s. Finally, the measurement result of simulated ammonia leakage verified that the ammonia remote sensor system could meet the need for ammonia leakage detection in the industrial production process.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3725
Author(s):  
Paweł Zimroz ◽  
Paweł Trybała ◽  
Adam Wróblewski ◽  
Mateusz Góralczyk ◽  
Jarosław Szrek ◽  
...  

The possibility of the application of an unmanned aerial vehicle (UAV) in search and rescue activities in a deep underground mine has been investigated. In the presented case study, a UAV is searching for a lost or injured human who is able to call for help but is not able to move or use any communication device. A UAV capturing acoustic data while flying through underground corridors is used. The acoustic signal is very noisy since during the flight the UAV contributes high-energetic emission. The main goal of the paper is to present an automatic signal processing procedure for detection of a specific sound (supposed to contain voice activity) in presence of heavy, time-varying noise from UAV. The proposed acoustic signal processing technique is based on time-frequency representation and Euclidean distance measurement between reference spectrum (UAV noise only) and captured data. As both the UAV and “injured” person were equipped with synchronized microphones during the experiment, validation has been performed. Two experiments carried out in lab conditions, as well as one in an underground mine, provided very satisfactory results.


2021 ◽  
pp. 174702182110371
Author(s):  
Scott Beveridge ◽  
Estefanía Cano ◽  
Steffen A. Herff

Equalisation, a signal processing technique commonly used to shape the sound of music, is defined as the adjustment of the energy in specific frequency components of a signal. In this work we investigate the effects of equalisation on preference and sensorimotor synchronisation in music. Twenty-one participants engaged in a goal-directed upper body movement in synchrony with stimuli equalised in three low-frequency sub-bands (0 - 50 Hz, 50 - 100 Hz, 100 - 200 Hz). To quantify the effect of equalisation, music features including spectral flux, pulse clarity, and beat confidence were extracted from seven differently equalised versions of music tracks - one original and six manipulated versions for each music track. These music tracks were then used in a movement synchronisation task. Bayesian mixed effects models revealed different synchronisation behaviours in response to the three sub-bands considered. Boosting energy in the 100 - 200 Hz sub-band reduced synchronisation performance irrespective of the sub-band energy of the original version. An energy boost in the 0 - 50 Hz band resulted in increased synchronisation performance only when the sub-band energy of the original version was high. An energy boost in the 50 - 100 Hz band increased synchronisation performance only when the sub-band energy of the original version was low. Boosting the energy in any of the three subbands increased preference regardless of the energy of the original version. Our results provide empirical support for the importance of low-frequency information for sensorimotor synchronisation and suggest that the effect of equalisation on preference and synchronisation are largely independent of one another.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 858 ◽  
Author(s):  
Timothy A. Vincent ◽  
Yuxin Xing ◽  
Marina Cole ◽  
Julian W. Gardner

A new signal processing technique has been developed for resistive metal oxide (MOX) gas sensors to enable high-bandwidth measurements and enhanced selectivity at PPM levels (<50 PPM VOCs). An embedded micro-heater is thermally pulsed from 225 to 350 °C, which enables the chemical reactions in the sensor film (e.g., SnO2, WO3, NiO) to be extracted using a fast Fourier transform. Signal processing is performed in real-time using a low-cost microcontroller integrated into a sensor module. The approach enables the remove of baseline drift and is resilient to environmental temperature changes. Bench-top experimental results are presented for 50 to 200 ppm of ethanol and CO, which demonstrate our sensor system can be used within a mobile robot.


Sign in / Sign up

Export Citation Format

Share Document