Titanium-Reinforced Polytetrafluoroethylene Membrane Combined with Inorganic Polyphosphate Induces Exophytic Bone Formation in Rabbit Calvaria

2007 ◽  
Vol 330-332 ◽  
pp. 1075-1078 ◽  
Author(s):  
J.S. Kim ◽  
S.Y. Na ◽  
Y.H. Kown ◽  
J.B. Park ◽  
J.H. Chung ◽  
...  

The purpose of this study was to examine if the application of titanium-reinforced expanded polytetrafluoroethylene(TR-ePTFE) membrane combined with bovine bone mineral(BBM) soaked in inorganic polyphosphate promotes exophytic bone formation in rabbit calvaria. For this purpose, a total of 8 rabbits were used, and rectangular decorticated calvaria sites were created using a round carbide bur. In the control group, rectangular parallelepiped-shaped TR-ePTFE membranes (RPTPMs) were filled with BBM soaked in saline and placed on the decorticated sites and fixed with metal pins. In the experimental groups, RPTPMs were filled with BBM soaked in 4%, 8% and 16% inorganic polyphosphate prior to fixing with metal pins. Animals were sacrificed at 4 and 8 weeks after surgery, and new bone formation was assessed by histomorphometric as well as statistical analysis. The results indicated that at 8 weeks, all the experimental groups demonstrated exophytic bone formation. At 8 weeks, the 8% polyphosphate group revealed the most new bone formation (p<0.05). On the basis of these findings, we conclude that inorganic polyphosphate has a promoting effect on bone regeneration, possibly by enhancing osteoinductivity of the decorticated wound area and osteoconductivity of the carrier material, but not much as we expected.

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1613
Author(s):  
Eunhye Jang ◽  
Ja-Youn Lee ◽  
Eun-Young Lee ◽  
Hyun Seok

The aim of this study was to evaluate the bone regeneration effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on a subperiosteal bone graft in a rat model. A subperiosteal space was made on the rat calvarium, and anorganic bovine bone (ABB), ABB/low bone morphogenetic protein (BMP) (5 µg), and ABB/high BMP (50 µg) were grafted as subperiosteal bone grafts. The new bone formation parameters of bone volume (BV), bone mineral density (BMD), trabecular thickness (TbTh), and trabecular spacing (TbSp) were evaluated by microcomputed tomography (µ-CT), and a histomorphometric analysis was performed to evaluate the new bone formation area. The expression of osteogenic markers, such as bone sialoprotein (BSP) and osteocalcin, were evaluated by immunohistochemistry (IHC). The ABB/high BMP group showed significantly higher BV than the ABB/low BMP (p = 0.004) and control groups (p = 0.000) and higher TbTh than the control group (p = 0.000). The ABB/low BMP group showed significantly higher BV, BMD, and TbTh than the control group (p = 0.002, 0.042, and 0.000, respectively). The histomorphometry showed significantly higher bone formation in the ABB/low and high BMP groups than in the control group (p = 0.000). IHC showed a high expression of BSP and osteocalcin in the ABB/low and high BMP groups. Subperiosteal bone grafts with ABB and rhBMP-2 have not been studied. In our study, we confirmed that rhBMP-2 contributes to new bone formation in a subperiosteal bone graft with ABB.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Ilkka Saarenpää ◽  
Patricia Stoor ◽  
Janek Frantzén

AbstractBioactive glass (BAG) S53P4 granules represent a bone augmentation biomaterial for the surgical treatment of bony defects, even in challenging conditions such as osteomyelitis. The aim of this eight-week rabbit implantation study was to evaluate the biocompatibility and bone regeneration performance of a BAG S53P4 putty formulation following its implantation into the proximal tibia bone of twenty-eight New Zealand white rabbits. BAG S53P4 putty was compared to BAG S53P4 granules (0.5-0.8 mm) to evaluate whether the synthetic putty binder influences the bone regeneration of the osteostimulative granules. The putty formulation facilitates clinical use because of its mouldability, injectability and ease of mixing with autograft. Implantation of putty and granules into proximal tibia defects resulted in good osseointegration of the two groups. Both biomaterials were biocompatible, showed high new bone formation, high vascularization and periosteal growth. No signs of disturbed bone formation were observed due to the PEG-glycerol binder in the BAG S53P4 putty. Instead, intramedullary ossification and stromal cell reaction were more advanced in the putty group compared to the control group (p = 0.001 and p < 0.001). In conclusion, the novel mouldable BAG S53P4 putty showed reliable bone regeneration in bony defects without adverse tissue or cell reactions.


2006 ◽  
Vol 309-311 ◽  
pp. 427-432 ◽  
Author(s):  
Y. Kim ◽  
Y.H. Kown ◽  
J.B. Park ◽  
J.H. Chung ◽  
H.N. Lim ◽  
...  

The purpose of this study was to examine if the application of custom-made porous titanium membranes combined with bone graft materials promotes exophytic bone formation in rabbit calvaria. For this purpose, round decorticated calvaria sites were created using a round carbide bur. In the control group, rectangular parallelepiped-shaped porous titanium membranes (RPTMs) were placed on the decorticated sites and fixed with metal pins. In the experimental groups, RPTMs were filled with one of the following bone graft materials prior to fixing with metal pins: bovine bone mineral (BBM), demineralized freeze-dried human cortical bone (DFDB) or freeze-dried human cancellous bone (FDB). Animals were sacrificed at 8 and 12 weeks after surgery, and new bone formation was assessed by histomorphometric as well as statistical analysis. The results indicate that at 8 and 12 weeks, all the experimental groups demonstrated exophytic bone formation. At 12 weeks, DFDB group revealed the most new bone formation (p<0.05) and resorption of grafted materials (p<0.05). On the basis of these findings, we conclude that RPTMs may be used as an augmentation membrane for guided bone regeneration and DFDB as an effective bone-inducing graft material.


Author(s):  
Jooseong Kim ◽  
Sukyoung Kim ◽  
In-Hwan Song

Octacalcium phosphate (OCP) is a precursor of biological apatite crystals that has attracted attention as a possible bone substitute. On the other hand, few studies have examined this material at the experimental level due to the limitations of OCP mass production. Recently, mass production technology of OCP was developed, and the launch of OCP bone substitutes is occurring. In this study, the bone regeneration capacity of OCP products was compared with two of the most clinically used materials: heat-treated bovine bone (BHA) and sintered biphasic calcium phosphate (BCP). Twelve rabbits were used, and defects in each tibia were filled with OCP, BHA, BCP, and left unfilled as control (CON). The tibias were harvested at 4 and 12 weeks, and 15 &mu;m slides were prepared using the diamond grinding method after being embedded in resin. Histological and histomorphometric analyses were performed to evaluate the bone regeneration ability and mechanism. The OCP showed significantly higher resorption and new bone formation in both periods analysed (p&lt;0.05). Overall, OCP bone substitutes can enhance bone regeneration significantly by activating osteoblasts and a rapid phase transition of OCP crystals to biological apatite crystals (mineralisation), as well as providing additional space for new bone formation by rapid resorption.


Author(s):  
Fereydoon Sargolzaei Aval ◽  
Eshaghali Saberi ◽  
Mohammad Reza Arab ◽  
Narjes Sargolzaei ◽  
Esmaeel Zare ◽  
...  

Objective: Regeneration of bone defects remains a challenge for maxillofacial and reparative surgeons. The purpose of this histological study was to assess the osteogenic potential of octacalcium phosphate (OCP) and bone matrix gelatin (BMG) alone and in combination in artificially created mandibular bone defects in rats. The quality of the newly formed bone was also evaluated. Methods: Thirty-six male Sprague Dawley rats (6-8 weeks old with 120-150 g weight) were randomly divided into four groups. Defects (3 mm in diameter and 2 mm in depth) were created in the mandible of rats and filled with 6 mg of OCP, BMG or a combination of both (1/4 ratio), respectively. Defects were left unfilled in the control group. To assess osteoinduction and bone regeneration and determine the quality of the newly formed bone, tissue specimens were harvested at seven, 14, and 21 days post-implantation. The specimens were processed, stained with hematoxylin and eosin (H&amp;E) and histologically analyzed under light microscopy. Results: In the experimental groups, new bone formation was initiated at the margins of defects from seventh day after implantation. At the end of the study period, the amount of the newly formed bone increased and the bone was relatively mature. Osteoinduction and new bone formation were greater in OCP/BMG group. In the control group, slight amount of new bone had been formed at the defect margins (next to host bone) on day 21. Conclusion: Combination of OCP/BMG may serve as an optimal biomaterial for treatment of mandibular bone defects.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Arash Khojasteh ◽  
Lida Kheiri ◽  
Hossein Behnia ◽  
Azita Tehranchi ◽  
Pantea Nazeman ◽  
...  

Tissue regeneration has become a promising treatment for craniomaxillofacial bone defects such as alveolar clefts. This study sought to assess the efficacy of lateral ramus cortical plate with buccal fat pad derived mesenchymal stem cells (BFSCs) in treatment of human alveolar cleft defects. Ten patients with unilateral anterior maxillary cleft met the inclusion criteria and were assigned to three treatment groups. First group was treated with anterior iliac crest (AIC) bone and a collagen membrane (AIC group), the second group was treated with lateral ramus cortical bone plate (LRCP) with BFSCs mounted on a natural bovine bone mineral (LRCP+BFSC), and the third group was treated with AIC bone, BFSCs cultured on natural bovine bone mineral, and a collagen membrane (AIC+BFSC). The amount of regenerated bone was measured using cone beam computed tomography 6 months postoperatively. AIC group showed the least amount of new bone formation (70±10.40%). LRCP+BFSC group demonstrated defect closure and higher amounts of new bone formation (75±3.5%) but less than AIC+BFSC (82.5±6.45%), suggesting that use of BFSCs within LRCP cage and AIC may enhance bone regeneration in alveolar cleft bone defects; however, the differences were not statistically significant. This clinical trial was registered at clinicaltrial.gov with NCT02859025 identifier.


2011 ◽  
Vol 56 (No. 3) ◽  
pp. 110-118 ◽  
Author(s):  
S.H. Heo ◽  
C.S. Na ◽  
N.S. Kim

Freeze-dried bovine bone transplantation is commonly used for orthopaedic surgery. Equine bone, which is available in great quantity, can be obtained as easily as bovine bone, and so represents a potential source of bone for transplantation. In the present study freeze-dried equine cortical bones were transplanted into experimentally-induced fibular defects in canines to evaluate xenogenic implantation of equine bone. Cortical bones that had been freed of antigens and defatted with chloroform and methanol were freeze-dried at &ndash;80 &deg;C for preservation of bone morphogenetic protein, sterilized with ethylene oxide gas and stored at room temperature. The experimental osteotomy was performed in a 15 mm-long bilateral region of each proximal metaphyseal fibula. The area of defect in eight beagle dogs (n = 16) received a transplanted freeze-dried equine cortical implant. The control group consisting of two beagles dogs (n = 4) received an autograft of a similar implant. The experiment region was radiographically monitored for bone union and host serum osteocalcin level was determined to assess osteoblast activity every two weeks for 24 weeks. In 14 of the 16 experimental cases, the graft was not associated with new bone formation. Resorption after new bone formation and remodelling with new bone formation each occurred in a single case. The results support the potential of using freeze-dried equine cortical bones as a xenogenic bone graft material in canines.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 823 ◽  
Author(s):  
Hao-Hueng Chang ◽  
Chun-Liang Yeh ◽  
Yin-Lin Wang ◽  
Kang-Kuei Fu ◽  
Shang-Jye Tsai ◽  
...  

The aim of this study was to evaluate the efficacy of bone regeneration in developed bioceramics composed of dicalcium phosphate and hydroxyapatite (DCP/HA). Critical bony defects were prepared in mandibles of beagles. Defects were grafted using DCP/HA or collagen-enhanced particulate biphasic calcium phosphate (TCP/HA/Col), in addition to a control group without grafting. To assess the efficacy of new bone formation, implant stability quotient (ISQ) values, serial bone labeling, and radiographic and histological percentage of marginal bone coverage (PMBC) were carefully evaluated four, eight, and 12 weeks after surgery. Statistically significant differences among the groups were observed in the histological PMBC after four weeks. The DCP/HA group consistently exhibited significantly higher ISQ values and radiographic and histological PMCB eight and 12 weeks after surgery. At 12 weeks, the histological PMBC of DCP/HA (72.25% ± 2.99%) was higher than that in the TCP/HA/Col (62.61% ± 1.52%) and control groups (30.64% ± 2.57%). After rigorously evaluating the healing of biphasic DCP/HA bioceramics with a critical size peri-implant model with serial bone labeling, we confirmed that neutralized bioceramics exhibiting optimal compression strength and biphasic properties show promising efficacy in fast bone formation and high marginal bone coverage in peri-implant bone defects.


Microscopy ◽  
2021 ◽  
Author(s):  
Keita Ogasawara ◽  
Masahiro To ◽  
Yu-Hao Liu ◽  
Toshimitsu Okudera ◽  
Takatsuna Nakamura ◽  
...  

Abstract Alveolar bone repair after tooth extraction is essential after oral surgeries. Various grafting materials are used to promote the regeneration of lost alveolar bone. This study analysed the morphological features of the tissue regeneration process using deproteinized bovine bone mineral (DBBM). DBBM was used to densely fill the extraction sockets in beagle dogs. Following resin casting of the vasculature, stereomicroscopy and scanning electron microscopy were used to observe blood vessels and hard tissues in haematoxylin and eosin-stained sections on postoperative days 14, 30 and 90 in conjunction with vascular endothelial growth factor (VEGF) immunostaining to evaluate alveolar bone vascularization. On day 14 post-operation, the DBBM granules tightly filled the extraction sockets, maintained alveolar margin height and formed a scaffold for aiding angiogenesis and new bone formation. On day 30, new bone formation was observed around the DBBM granules. By day 90, bone tissue regeneration progressed in both groups but was more pronounced in the DBBM group. Alveolar margin height was maintained in the DBBM group throughout the study. Furthermore, VEGF expression in the DBBM group was detected around newly formed bone. We conclude that DBBM acts as a suitable scaffold for new bone generation, as well as angiogenesis around healing alveolar bone, and that it has the potential to play a key role in vascularization and bone formation.


Sign in / Sign up

Export Citation Format

Share Document