Improvement of Microstructure of Bovine Hydroxyapatite with Yttria

2007 ◽  
Vol 330-332 ◽  
pp. 47-50
Author(s):  
L.S. Ozyegin ◽  
S. Salman ◽  
Faik N. Oktar ◽  
Simeon Agathopoulos ◽  
Onur Meydanoglu ◽  
...  

Composites of calcinated bovine bone derived hydroxyapatite (HA) with 0.5 and 1 wt% Y2O3 were prepared by sintering. Money and time saving feature the production of HA from natural sources. In this study, results of scanning electron microscopy (SEM) and X-ray diffraction analysis aimed to interpret the results of measurements of densification, microhardness, and compression strength of the produced composites. The best mechanical properties were achieved after sintering at 1200°C for compressive strength and 1300°C for microhardness. The results are in a fair agreement with densification measurements and microstructure analysis.

2007 ◽  
Vol 330-332 ◽  
pp. 43-46
Author(s):  
L.S. Ozyegin ◽  
Faik N. Oktar ◽  
Simeon Agathopoulos ◽  
S. Salman ◽  
Y. Bozkurt ◽  
...  

Composites of calcinated bovine bone derived hydroxyapatite (BHA) doped 0.5 and 1 wt% CaF2 were prepared by sintering. The production of BHA from natural sources is preferred due to money and time saving reasons. Scanning electron microscopy (SEM) and X-ray diffraction analysis together with measurements of density and compression strength were carried out in the produced samples. The experimental results indicated that compression strength of the composites increase when sintering temperature increases. The best compression strength was achieved after sintering at 1200°C for 0.5% CaF2 addition. The results are in agreement with densification measurements and microstructure analysis. With regards to the amount of CaF2, the results indicate that small additions of F, lower than 0.5%, can further improve the mechanical properties of HA.


2006 ◽  
Vol 309-311 ◽  
pp. 45-48 ◽  
Author(s):  
Faik N. Oktar ◽  
H. Aydin ◽  
Gültekin Göller ◽  
Simeon Agathopoulos ◽  
G. Rocha ◽  
...  

The properties of sintered hydroxyapatite (HA), obtained from bovine femoral shafts via calcination method, were investigated utilizing scanning electron microscopy (SEM) and X-ray diffraction analysis together with measurements of microhardness, density, and compression strength. The production of HA from natural sources is preferred due to money and time saving reasons. The results indicate the new HA materials as promissing in biomedicine, since similar mechanical behaviour was obtained with previous studies.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


Author(s):  
Aniek Setiya Budiatin ◽  
Samirah ◽  
Maria Apriliani Gani ◽  
Wenny Putri Nilamsari ◽  
Chrismawan Ardianto ◽  
...  

Bovine bone is a considerable source for the production of hydroxyapatite. The recent study reported a novel method to extract hydroxyapatite from bovine bone without producing hazardous residue. The bovine bones were cut and boiled in the opened chamber followed by boiling in pressurized tank. The bones were then soaked into 95% ethanol. Calcination was then conducted in 800°C, 900°C and 1,000°C, for 2 hours. The result was then grinded and sieved. The powder then was characterized using Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) to measure the purity of hydroxyapatite. It is concluded that the hydroxyapatite derived from this process showed 100% purity, resulting 35.34 ± 0.39% w/w from the wet bone weight and 72.3% w/w from the dried weight. The present extraction method has been proven to yield high amount of pure hydroxyapatite as well as reducing the use of hazardous reagent.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Ruy A. Sá Ribeiro ◽  
Marilene G. Sá Ribeiro ◽  
Gregory P. Kutyla ◽  
Waltraud M. Kriven

To determine the viability of using a local resource for geopolymer synthesis, geopolymers were synthesized using metakaolin made from clay mined in the Amazonian region of Brazil. Samples were made with mixed potassium-sodium and pure sodium metakaolin-based geopolymer. Samples were also made using commercial metakaolin (CMK) from BASF, Inc. as a comparison to the Amazonian metakaolin (AMK). Scanning electron microscopy was used to investigate the microstructure of the materials. X-ray diffraction was able to confirm the formation of geopolymer. The mechanical properties of AMK material were nearly equivalent to those based on CMK. Neither CMK nor AMK reacted completely, although samples made with CMK showed less unreacted material. By increasing the mixing intensity and duration, the amount of residual unreacted material was substantially reduced, and mechanical properties were improved.


2013 ◽  
Vol 86 (2) ◽  
pp. 205-217 ◽  
Author(s):  
Hedayatollah Sadeghi Ghari ◽  
Zahra Shakouri

ABSTRACT Research was undertaken on natural rubber (NR) nanocomposites with organoclays. A double-network (DN) structure is formed when a partially cross-linked elastomer is further cross-linked during a state of strain. Two methods were used in the preparation of NR/organoclay nanocomposites: the ordinary method (single-network NR nanocomposite) and double-networked NR (DN-NR) nanocomposites. The single-networked NR nanocomposites were used for comparison. The effects of organoclay (5 phr) with a different extension ratio on curing characteristics, mechanical properties, hardness, swelling behavior, and morphology of single- and double-networked NR nanocomposites were studied. The results showed that double-networked NR nanocomposites exhibited higher physical and mechanical properties. The tensile strength of DN-NR nanocomposites increased up to 33 MPa (more than four times greater than that of pure NR) and then decreased with an increasing extension ratio. Modulus and hardness continuously increased with an increased extension ratio. The microstructure of the NR/organoclay systems was studied by X-ray diffraction and field emission scanning electron microscopy. The effects of different extension ratios on the dispersion of organoclay layers in the nanocomposites were investigated. Generally, results showed that the optimized extension ratio in DN nanocomposites was equal (or about or around) to α= 2.


2014 ◽  
Vol 50 (1) ◽  
pp. 87-90 ◽  
Author(s):  
E. Aldirmaz ◽  
I. Aksoy

In this study, some physical and mechanical properties in Cu-9.97%Al-4.62%Mn (wt%) alloy were investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and compression deformation test. Bainite phase were obtained in the samples according to SEM and XRD analyses. Compression stress was applied on the alloy in order to investigate the deformation effect on the bainite phase transformation. On the surface of the Cu-9.97%Al-4.62%Mn alloy after the deformation, both bainite and martensite variants formed.


Author(s):  
Mohammad K. Hossain ◽  
Samira N. Shaily ◽  
Hadiya J. Harrigan ◽  
Terrie Mickens

A completely biodegradable composite was fabricated from an herbal polymer, soy protein concentrate (SPC) resin. Soy protein was modified by adding 30 wt% of glycerol and 5 wt% of poly vinyl alcohol (PVA) to enhance its mechanical as well as thermal property. 3%, 5%, 10%, and 20% nanoclay (NC) were infused into the system. To evaluate its mechanical properties, crystallinity, thermal properties, bonding interaction, and morphological evaluation, tensile, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) tests, and optical microscopy (OM) and scanning electron microscopy (SEM) evaluation were performed. Tensile tests showed that the addition of nanoclay improved the mechanical properties of the modified resin. Soy protein is hydrophilic due to the presence of amino acids that contain various polar groups such as amine, carboxyl, and hydroxyl. As a result, polar nanoclay particles that are exfoliated can be evenly dispersed in the SPC resin. From experimental results, it is clear that adding of nanoclay with SPC resin significantly increased the stiffness of the SPC resin. A combination of 5% clay, 30% glycerol, and 5% PVA with the modified SPC resulted in the maximum stress of 18 MPa and Young modulus of 958 MPa. The modified SPC showed a reduced failure strain as well. X-ray diffraction curves showed an improvement of crystallinity of the prepared resin with increasing amount of nanoclay. Interaction among soy, glycerol, PVA, and nanoclay was clearly demonstrated from the FTIR analysis. Optical microscopy (OM) and scanning electron microscopy (SEM) micrographs revealed rougher surface in the nanoclay infused SPC samples compared to that of the neat one. SEM evaluation revealed rougher fracture surface in the NC infused samples.


Sign in / Sign up

Export Citation Format

Share Document