High Speed Lapping of SiC Ceramic Material with Fixed Abrasive

2007 ◽  
Vol 336-338 ◽  
pp. 1458-1460 ◽  
Author(s):  
Xin Hong Yang ◽  
Yu Min Zhang ◽  
Jie Cai Han

An experimental investigation is carried out to machine SiC ceramic material through method of high speed plane lapping with fixed abrasive. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasive and the lapping pressure for the brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic material in ductile mode with a high efficiency and a low cost using W3.5 grit under a lapping pressure of 0.1MPa and then a smooth surface with surface roughness of Ra 2.4nm can be achieved.

2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


2012 ◽  
Vol 576 ◽  
pp. 41-45
Author(s):  
A.K.M. Nurul Amin ◽  
M.A. Mahmud ◽  
M.D. Arif

The majority of semiconductor devices are made up of silicon wafers. Manufacturing of high-quality silicon wafers includes numerous machining processes, including end milling. In order to end mill silicon to a nano-meteric surface finish, it is crucial to determine the effect of machining parameters, which influence the machining transition from brittle to ductile mode. Thus, this paper presents a novel experimental technique to study the effects of machining parameters in high speed end milling of silicon. The application of compressed air, in order to blow away the chips formed, is also investigated. The machining parameters’ ranges which facilitate the transition from brittle to ductile mode cutting as well as enable the attainment of high quality surface finish and integrity are identified. Mathematical model of the response parameter, the average surface roughness (Ra) is subsequently developed using RSM in terms of the machining parameters. The model was determined, by Analysis of Variance (ANOVA), to have a confidence level of 95%. The experimental results show that the developed mathematical model can effectively describe the performance indicators within the controlled limits of the factors that are being considered.


Author(s):  
А.М. САЖНЕВ ◽  
Л.Г. РОГУЛИНА

Приводятся результаты моделирования сверхскоростного буфера тактовых сигналов, выполненного на базе арсенид-галлиевых n-канальных транзисторов в среде OrCAD и полностью отвечающего следующим требованиям: высокие технические характеристики, малые размеры, высокая частота и КПД, гибкость применения. Приведенные поведенческие модели допускают использование любой программной среды по схемотехническому моделированию. The results of simulation of an ultra-high-speed clock signal buffer based on gallium arsenide n-channel transistors in OrCAD are presented, which fully meets the following requirements: high technical characteristics, application flexibility, low cost, small size, high frequency, and high efficiency. The given behavioral models allow the use of any software environment for circuit modeling.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2012 ◽  
Vol 468-471 ◽  
pp. 920-923
Author(s):  
Ya Ping Bao ◽  
Li Liu ◽  
Yuan Wang ◽  
Qian Song

This paper introduced a fast fingerprint identification system based on TMS320VC5416 DSP chip and MBF200 solidity fingerprint sensor. It precipitates fingerprint identification device developing into the direction of miniaturization, embedded and automatic.It recommends fingerprint identification system hardware and software design and the main system processing flow, aim at fingerprint identification arithmetic, the influence of system operation speed is being researched at the same time. High-speed data acquisition system is been built in order to achieve a DSP fingerprint identification system with high efficiency and low cost.


Author(s):  
Elias Brassitos ◽  
Constantinos Mavroidis ◽  
Brian Weinberg

Advanced robotics requires a new generation of actuators able to exhibit a number of desirable characteristics ranging from high power density and high efficiency, high positioning resolution, high torque capacity and torsional stiffness, lightweight designs and low-cost packages. In this paper, we present the development and the experimental evaluation of a new actuator, aimed at improving the torque density and mechanical efficiency of actuated robotic joints, and enhancing the portability and effectiveness of robotic systems engaged in biomechanical applications such as rehabilitation robots and wearable exoskeletons. The new actuator, called the Gear Bearing Drive (GBD), consists of a two-stage planetary gear arrangement coupled through the planets and driven by an external rotor brushless motor that is inscribed within the input stage sun gear. This planetary configuration enables for incredible high-speed reductions and allows for embedding the motor directly within the gearbox saving significant space on the actuator length. Our initial experimental prototypes have demonstrated impressive performance with the potential to deliver more than 30Nm of continuous torque with 85% mechanical efficiency and 0.0005 degree of backlash, and up to 200 rpm maximum output speed in a highly compact and robust package.


2010 ◽  
Vol 431-432 ◽  
pp. 17-20 ◽  
Author(s):  
Yong Wei Zhu ◽  
Jun Li ◽  
Jun Wang ◽  
Kui Lin

The swelling ratio and the pencil hardness of pad were introduced to evaluate the properties of hydrophilic fixed abrasive (FA) pad. The effect of pad composition on its swelling ratio and pencil hardness was studied. Results show that the swelling ratio increases with the rise of content of Trimethylopropane Triacrylate (TMPTA) and Urethane Acrylate (PUA) and the pad gets harder while there is more TMPTA and less PUA. Results also show that a low swelling ratio corresponds to a high material removal rate (MRR), and a low wet pencil hardness to a low surface roughness in each group.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1918
Author(s):  
Dongpo Wang ◽  
Shouxiang Lu ◽  
Dong Xu ◽  
Yuanlin Zhang

C/SiC composites are the preferred materials for hot-end structures and other important components of aerospace vehicles. It is important to reveal the material removal mechanism of ultrasound vibration-assisted grinding for realizing low damage and high efficiency processing of C/SiC composites. In this paper, a single abrasive particle ultrasound vibration cutting test was carried out. The failure modes of SiC matrix and carbon fiber under ordinary cutting and ultrasound cutting conditions were observed and analyzed. With the help of ultrasonic energy, compared with ordinary cutting, under the conditions of ultrasonic vibration-assisted grinding, the grinding force is reduced to varying degrees, and the maximum reduction ratio reaches about 60%, which means that ultrasonic vibration is beneficial to reduce the grinding force. With the observation of cutting debris, it is found that the size of debris is not much affected by the a p with ultrasound vibration. Thus, the ultrasound vibration-assisted grinding method is an effective method to achieve low damage and high efficiency processing of C/SiC composites.


Sign in / Sign up

Export Citation Format

Share Document