First-Principles Study of Nonmetal-Doped Titanium Oxides

2007 ◽  
Vol 336-338 ◽  
pp. 2507-2509
Author(s):  
Xue Gao ◽  
Jia Xiang Shang ◽  
Yue Zhang

The electronic structures of anatase titanium oxides (TiO2) substitutional doping with N, F, C, P and S for O have been studied by first-principles method based on the density functional theory. The lattice distortion and densities of states of nonmetal-doped anatase TiO2 as well as photocatalytic activity were discussed. Comparing the effects of these five nonmetal ions (N, F, C, P and S) in the anatase TiO2, the substitutional doping of N is the most effective to get better visible-light activity because of its least lattice distortion and a large band-gap narrowing effect and the suitable relative position of the impurity states in band gap.

2012 ◽  
Vol 26 (27) ◽  
pp. 1250179 ◽  
Author(s):  
QINGYU HOU ◽  
YONGJUN JIN ◽  
CHUN YING ◽  
ERJUN ZHAO ◽  
YUE ZHANG ◽  
...  

Anatase TiO 2 supercells were studied by first-principles, in which one was undoped and another three were high N -doping. Partial densities of states, band structure, population and absorption spectrum were calculated. The calculated results indicated that in the condition of TiO 2-x N x (x = 0.0625, 0.125, 0.25), the higher the doping concentration is, the shorter will be the lattice parameters parallel to the direction of c-axis. The strength of covalent bond significantly varied. The formation energy increases at first, and then decreases. The doping models become less stable as N -doping concentration increases. Meanwhile, the narrower the band gap is, the more significant will be the redshift, which is in agreement with the experimental results.


2010 ◽  
Vol 156-157 ◽  
pp. 1385-1388
Author(s):  
Rui Qing Xu ◽  
Lan Fang Yao ◽  
Lin Li ◽  
Shuo Wang ◽  
Lin Lin Tian ◽  
...  

First-principles calculations using the plane-wave pseudo-potential (PWPP) method based on the density functional theory (DFT) is employed to study the crystal structure, band gap, density of states of anatase TiO2 doped with gadolinium (Gd). The generalized gradient approximation (GGA) based on exchange-correlation energy optimization is employed to calculate them. The calculated results demonstrate that the mixing of gadolinium dopants induces states with original titanium 3d and oxygen 2p valence band attributes to the band gap narrowing. This can enhance the photocatalytic activity of anatase TiO2.


2013 ◽  
Vol 562-565 ◽  
pp. 1166-1170 ◽  
Author(s):  
Xiong Tang ◽  
Lan Fang Yao ◽  
Xin Pei Yan ◽  
Jun Long Kang

Using the First principles calculations, the crystal structure, band gap, total and partial density of states (DOS) of anatase TiO2and anatase TiO2doped with Yttrium were calculated by a plane-wave pseudopotential (PWPP) method based on density functional theory (DFT). The generalized gradient approximation (GGA) based on exchange-correlation energy optimization was employed to calculate them. From the calculation results, the band gap of anatase TiO2and Y3+doped TiO2are about 2.15eV and 0.86eV. The calculated results demonstrated that the mixing of Yttrium (Y) dopants induces states with original titanium 3d and oxygen 2p valence band attributes to the band gap narrowing. This can enhance the photocatalytic activity of anatase TiO2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Faizan ◽  
K. C. Bhamu ◽  
Ghulam Murtaza ◽  
Xin He ◽  
Neeraj Kulhari ◽  
...  

AbstractThe highly successful PBE functional and the modified Becke–Johnson exchange potential were used to calculate the structural, electronic, and optical properties of the vacancy-ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; X = Cl, Br, and I) using the density functional theory, a first principles approach. The convex hull approach was used to check the thermodynamic stability of the compounds. The calculated parameters (lattice constants, band gap, and bond lengths) are in tune with the available experimental and theoretical results. The compounds, Rb2PdBr6 and Cs2PtI6, exhibit band gaps within the optimal range of 0.9–1.6 eV, required for the single-junction photovoltaic applications. The photovoltaic efficiency of the studied materials was assessed using the spectroscopic-limited-maximum-efficiency (SLME) metric as well as the optical properties. The ideal band gap, high dielectric constants, and optimum light absorption of these perovskites make them suitable for high performance single and multi-junction perovskite solar cells.


2016 ◽  
Vol 4 (29) ◽  
pp. 11498-11506 ◽  
Author(s):  
Taehun Lee ◽  
Yonghyuk Lee ◽  
Woosun Jang ◽  
Aloysius Soon

Using first-principles density-functional theory calculations, we investigate the advantage of using h-WO3 (and its surfaces) over the larger band gap γ-WO3 phase for the anode in water splitting. We demonstrate that h-WO3 is a good alternative anode material for optimal water splitting efficiencies.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 100 ◽  
Author(s):  
Weiwei Wang ◽  
Dahuai Zheng ◽  
Mengyuan Hu ◽  
Shahzad Saeed ◽  
Hongde Liu ◽  
...  

Numerous studies have indicated that intrinsic defects in lithium niobate (LN) dominate its physical properties. In an Nb-rich environment, the structure that consists of a niobium anti-site with four lithium vacancies is considered the most stable structure. Based on the density functional theory (DFT), the specific configuration of the four lithium vacancies of LN were explored. The results indicated the most stable structure consisted of two lithium vacancies as the first neighbors and the other two as the second nearest neighbors of Nb anti-site in pure LN, and a similar stable structure was found in the doped LN. We found that the defects dipole moment has no direct contribution to the crystal polarization. Spontaneous polarization is more likely due to the lattice distortion of the crystal. This was verified in the defects structure of Mg2+, Sc3+, and Zr4+ doped LN. The conclusion provides a new understanding about the relationship between defect clusters and crystal polarization.


BIBECHANA ◽  
2014 ◽  
Vol 12 ◽  
pp. 70-79 ◽  
Author(s):  
Nurapati Pantha ◽  
Jagaran Acharya ◽  
Narayan Prasad Adhikari

We study the structural and electronic properties of solid methane of space group P212121 at high pressure. The density-functional theory (DFT) based first-principles calculations within the Generalized Gradient Approximations (GGA) have been performed by using Quantum Espresso package. Our findings show that the solid methane in orthorhombic structure compresses fast at the first, and then slowly as a function of elevated hydrostatic pressure. The pressure-volume diagram agrees with the available previously reported data up to pressure of around 200 GPa. In orthorhombic structure, solid methane is a wide band gap insulator at low pressures (tens of GPa). The band gap decreases with increase in the pressure. At high pressure (around 900 GPa), the band gap decreases to semi-conductor range (1.78 eV). Our results reveal that methane to be metallic above the pressure coverage of the present study which is consistent to the interior of the giant planets. The band gap as a function of pressure (from the present work) agrees well with the previously reported data. DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11779BIBECHANA 12 (2015) 70-79


1992 ◽  
Vol 45 (23) ◽  
pp. 13741-13744 ◽  
Author(s):  
A. Oschlies ◽  
R. W. Godby ◽  
R. J. Needs

Sign in / Sign up

Export Citation Format

Share Document