Tensile Mechanical Properties of AM50A Alloy by Hopkinson Bar

2007 ◽  
Vol 340-341 ◽  
pp. 247-254 ◽  
Author(s):  
Dong Wei Shu ◽  
Wei Zhou ◽  
Guo Wei Ma

An ultralight magnesium alloy AM50A has been investigated for its potential to be used in aerospace and automotive industry. The dynamic stress strain relation of aluminum 6061 T6 and the magnesium alloy AM50A have been obtained by using the Hopkinson bar apparatus. The strain rates range between 600 s-1 and 1300 s-1. The Al 6061 T6 results tally well with those in literature. The magnesium alloy AM50A displays about 50% higher tensile stress at the strain rate of about 1300 s-1 than at static.

2017 ◽  
Vol 09 (05) ◽  
pp. 1750075 ◽  
Author(s):  
Beixin Xie ◽  
Liqun Tang ◽  
Yiping Liu ◽  
Zhenyu Jiang ◽  
Zejia Liu

Split Hopkinson pressure bar (SHPB) technique is the most important test method to characterize dynamic stress–strain relations of various materials at different strain rates, and this technique requires uniform deformation of specimen during the experiment. However, some studies in recent years have found obvious deformation localization within metal foam specimens in SHPB tests, which may significantly affect the reliability of the results. Usability of SHPB to characterize dynamic stress–strain relation of metal foam becomes doubtful. In this paper, based on experimental verification, we carried out numerical simulative SHPB tests to study the problem, in which the metal foam specimens were modeled to have 3D meso structures with properties of their matrix material. Numerical simulative SHPB tests of aluminum foam specimens with varying thickness at different strain rates were performed. Deformation distribution in each local region of the specimen was examined and a concept of “effective specimen” was presented. Appropriate specimen thickness and range of testing strain rate were suggested based on quantitative analysis. Finally, we recommended a method how to revise the nominal strain and strain rate measured by traditional SHPB method to acquire the reliable dynamic stress–strain relation.


2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1561 ◽  
Author(s):  
Kebin Zhang ◽  
Wenbin Li ◽  
Yu Zheng ◽  
Wenjin Yao ◽  
Changfang Zhao

The temperature and strain rate significantly affect the ballistic performance of UHMWPE, but the deformation of UHMWPE under thermo-mechanical coupling has been rarely studied. To investigate the influences of the temperature and the strain rate on the mechanical properties of UHMWPE, a Split Hopkinson Pressure Bar (SHPB) apparatus was used to conduct uniaxial compression experiments on UHMWPE. The stress–strain curves of UHMWPE were obtained at temperatures of 20–100 °C and strain rates of 1300–4300 s−1. Based on the experimental results, the UHMWPE belongs to viscoelastic–plastic material, and a hardening effect occurs once UHMWPE enters the plastic zone. By comparing the stress–strain curves at different temperatures and strain rates, it was found that UHMWPE exhibits strain rate strengthening and temperature softening effects. By modifying the Sherwood–Frost model, a constitutive model was established to describe the dynamic mechanical properties of UHMWPE at different temperatures. The results calculated using the constitutive model were in good agreement with the experimental data. This study provides a reference for the design of UHMWPE as a ballistic-resistant material.


2003 ◽  
Vol 125 (3) ◽  
pp. 294-301 ◽  
Author(s):  
B. Song ◽  
W. Chen

Dynamic compressive stress-strain curves at various strain rates of an Ethylene-Propylene-Diene Monomer Copolymer (EPDM) rubber have been determined with a modified split Hopkinson pressure bar (SHPB). The use of a pulse-shaping technique ensures that the specimen deforms at a nearly constant strain rate under dynamically equilibrated stress. The validity of the experiments was monitored by a high-speed digital camera for specimen edge deformation, and by piezoelectric force transducers for dynamic stress equilibrium. The resulting dynamic stress-strain curves for the EPDM indicate that the material is sensitive to strain rates and that the strain-rate sensitivity depends on the value of strain. Based on a strain energy function theory, a one-dimensional dynamic constitutive equation for this rubber was modified to describe the high strain-rate experimental results within the ranges of strain and strain rates presented in this paper.


Author(s):  
Pradeep Lall ◽  
Vishal Mehta ◽  
Jeff Suhling ◽  
Ken Blecker

Abstract In many industries, such as automotive, oil and gas, aerospace, medical technologies, electronic parts can often be exposed to high strain loads during shocks, vibrations and drop-impact conditions. Such electronic parts can often be subjected to extreme low and high temperatures ranging from −65°C to 200°C. Also, these electronic devices can be subjected to strain rates of 1 to 100 per second in the critical environment. Recently, many doped SAC solder alloys are being introduced in the electronic component including SAC-Q, SAC-R, Innolot. SAC-Q is made with addition of Bi in Sn-Ag-Cu composition. Mechanical characteristic results and data for lead-free solder alloys are extremely important for optimizing electronic package reliability, at high temperature storage and elevated strain rates. Furthermore, the mechanical properties of solder alloys can be changed significantly due to a thermal aging, which is causing modification of microstructure. Data for the SAC-Q solder alloy with a high temp aging and testing at extreme low to high operating temperatures are not available. SAC-Q material was tested and analyzed for this study at range of operating temperatures of −65°C to 200°C and at a strain rate up to 75 per second. After the specimens were manufactured and reflowed, specimens were stored at 100°C for the isothermal aging for up to 90 days, before tensile tests were carried out at different operating temperatures. For the wide range of strain rates and test temperatures, stress-strain curves are established. In addition, the measured experimental results and data were fitted to the Anand viscoplasticity model and the Anand constants were calculated by estimating the stress-strain behavior measured in the wide range of operating temperatures and strain rates.


2013 ◽  
Vol 423-426 ◽  
pp. 241-246
Author(s):  
Ming Long Ma ◽  
Kui Zhang

The behavior evolvement of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr (EW75) magnesium alloy during the hot deformation process was discussed. The flow stress behavior of magnesium alloy over the strain rate range 0.002s-1to 2s-1and the temperature range 623K to 773K had been researched on Gleeble-1500D hot simulator under the maximum deformation degree 60%. A mathematical model was established to predict the stress-strain curves of this alloy during deformation. The experimental results showed that the stress-strain curves were obviously affected by the strain rates and deformation temperatures. The mathematical model could predict the stress-strain curves when the strain rates were under 0.2-1, but there was significant error in some of stress-strain curves when the strain-rate was 2-1by the reason of deformation temperature rising.


2014 ◽  
Vol 660 ◽  
pp. 562-566 ◽  
Author(s):  
Akbar Afdhal ◽  
Leonardo Gunawan ◽  
Sigit P. Santosa ◽  
Ichsan Setya Putra ◽  
Hoon Huh

The dynamic mechanical properties of a material are important keys to investigate the impact characteristic of a structure such as a crash box. For some materials, the stress-strain relationships at high strain rate loadings are different than that at the static condition. These mechanical properties depend on the strain rate of the loadings, and hence an appropriate testing technique is required to measure them. To measure the mechanical properties of a material at high strain rates, ranging from 500 s-1 to 10000 s-1, a Split Hopkinson Pressure Bar is commonly used. In the measurements, strain pulses are generated in the bars system, and pulses being reflected and transmitted by a test specimen in the bar system are measured. The stress-strain curves as the material properties of the test specimen are obtained by processing the measured reflected and transmitted pulses. This paper presents the measurements of the mechanical properties of St 37 mild steel at several strain rates using a Split Hopkinson Pressure Bar. The stress-strain curves obtained in the measurement were curve fitted using the Power Law. The results show that the strength of St 37 material increases as the strain rate increases.


2011 ◽  
Vol 686 ◽  
pp. 162-167 ◽  
Author(s):  
Zheng Liu ◽  
Ping Li Mao ◽  
Chang Yi Wang

The high strain rate compression behavior of extruded Mg-Gd-Y magnesium alloy was tested by split Hopkinson pressure bar (SHPB) under the strain rates of 465s-1,2140s-1and 3767s-1. As comparison the quasi-static compression behavior was tested in the meanwhile. The results show that the quasi-static yield stress is equivalent to that of high strain rates, but the flow stress at high strain rates are higher than that of quasi-static stain rate at the same strain. When the strain rate is increase from quasi-static to high strain rates the deformation stresses increase obviously but within the present testing high strain rates, increasing the strain rate the stress has a slight increasing, indicating that at high strain rate the stress of Mg-Gd-Y magnesium alloy is not sensitive to the strain rate. The constitutive equation between deformation stress, strain and strain rate was build based on the tested compression stress strain curves. The calculated stress strain data were compared with tested stress strain curves. The results demonstrate that when the strain rates are 0.001s-1,465s-1,2140s-1respectively the calculated and experimental data are fit very well. The calculated stress is higher than that of tested stress if the strain rate is increase to 3767s-1and the strain is more than 0.15. The discrepancy was explained through the physical soundness of Johnson-Cook model.


2014 ◽  
Vol 28 (08) ◽  
pp. 1450063 ◽  
Author(s):  
Jing Xiao ◽  
Iram Raza Ahmad ◽  
D. W. Shu

The dynamic stress–strain characteristics of magnesium alloys have not been sufficiently studied experimentally. Thus, the present work investigated compressive dynamic stress–strain characteristics of two representative magnesium alloys: AZ91D and AZ31B at high strain rates and elevated temperatures. In order to use the stress–strain characteristics in numerical simulations to predict the impact response of components, the stress–strain characteristics must be modeled. The most common approach is to use accepted constitutive laws. The results from the experimental study of the response of magnesium alloys AZ91D and AZ31B under dynamic compressive loading, at different strain rates and elevated temperatures are presented here. Johnson–Cook model was used to best fit the experimental data. The material parameters required by the model were obtained and the resultant stress–strain curves of the two alloys for each testing condition were plotted. It is found that the dynamic stress–strain relationship of both magnesium alloys are strain rate and temperature dependent and can be described reasonably well at high strain rates and room temperature by Johnson–Cook model except at very low strains. This might be due to the fact that the strain rate is not strictly constant in the early stage of deformation.


Sign in / Sign up

Export Citation Format

Share Document