Compression Test of Composite Sandwich Panel

2007 ◽  
Vol 348-349 ◽  
pp. 605-608
Author(s):  
Jong Woong Lee ◽  
Cheol Won Kong ◽  
Se Won Eun ◽  
Jae Sung Park ◽  
Young Soon Jang ◽  
...  

Composite materials are used in aerospace structures due to their considerable bending stiffness and strength-to-weight ratio. A composite sandwich is composed of a face-sheet and an aluminum core. The face-sheet of the sandwich takes the bending stress and core of sandwich takes the shear stress. A compression test and FEM analysis accomplished about composite sandwich panels that have curvature. The FEM analysis was performed using a commercial code, ANSYS and the compression test was performed until failure occurred in the sandwich panel. A strain gauge and a displacement gauge were used to acquire the data. In this paper, the failure strength and failure mode was checked. Additionally, the results of the test and analysis were compared.

2012 ◽  
Vol 585 ◽  
pp. 29-33
Author(s):  
Amarpreet S. Bir ◽  
Hsin Piao Chen ◽  
Hsun Hu Chen

In the present study, both critical buckling load maximization and face-sheet laminate thickness minimization problems for the composite sandwich panel, subjected to bi-axial compressive loading under various imposed constraints have been investigated using genetic algorithms. In the previously published work, the optimization of simple composite laminate panels with only even number of laminae has been considered [1, 3]. The present work allows the optimization of a composite sandwich panel with both even and odd number of laminae in the face-sheet laminates. Also, the effects of the bending-twisting coupling terms (D16and D26) in bending stiffness matrix which were neglected in the previous studies [1, 2, 3], are considered in the present work for exact solutions. In addition effect of both balanced and unbalanced face-sheet laminates on the optimum solutions have also been investigated, whereas only balanced laminates were considered in the previous studies [1, 2, 3].


Author(s):  
Shah Alam ◽  
Aakash Bungatavula

Abstract The goal of this paper is to find the best impact response of the composite sandwich panels with honeycomb core. The focus of the study is to find the effects of changing the face sheet thickness and the core height of the sandwich panel subjected to variable velocities on impact performance. Initially, honeycomb core sandwich panel with 1mm thick face sheet is modelled in Abaqus/explicit to calculate the energy absorption, residual velocity, and deformation at four different velocities. Then, the process is repeated by changing the face sheets thickness to 2mm and 3mm to see the effects of changing the thickness on the impact performance of a composite sandwich panel. The honeycomb core height is also changed to see its effect on the performance. In all models, Al 7039 is used in the core and T1000G is used in the face sheets.


Author(s):  
Jong Woong Lee ◽  
Cheol Won Kong ◽  
Se Won Eun ◽  
Jae Sung Park ◽  
Young Soon Jang ◽  
...  

2019 ◽  
Vol 22 (3) ◽  
pp. 866-895 ◽  
Author(s):  
S Jedari Salami

This study investigates the nonlinear bending response of a novel class of sandwich beams with flexible core and face sheets reinforced with graphene platelets that are functionally graded distributed through the thickness. Nonlinear governing equations are established based on extended high-order sandwich panel theory and Von Kármán type of geometrical nonlinearity. In this theory, the face sheets follow the first-order shear deformation theory, and the two-dimensional elasticity is adopted for the core. These nonlinear differential equations are discretized into algebraic systems by means of the Ritz-based method from which the static bending solution can be achieved. The effective Young’s modulus of functionally graded graphene platelet-reinforced composite (GPLRC) face sheets is determined through the modified Halpin–Tsai micromechanics model, and associated Poisson’s ratio is evaluated by employing the rule of mixture. Comparison studies are provided for a sandwich beam with graphene-reinforced face sheets and conventional nanocomposite beam reinforced by graphene platelets due to lack of results for introduced sandwich beams. Besides, three-point bending test was carried out in order to assure the validity of nonlinear bending analysis of a sandwich beam based on extended high-order sandwich panel theory. Afterwards, parametric studies are given to examine the influences of graphene platelet distribution pattern, weight fraction, and core-to-face sheet thickness ratio together with the total number of layers on the linear and nonlinear bending performances of the sandwich beams. Numerical results demonstrate that distributing more graphene platelets near the upper and lower surface layers of the face sheets, named X-GPLRC, is capable to improve the bending strength and decrease the local deflection of the top face sheet, and this recovery effect becomes more significant as graphene platelet weight fraction increases. The results also reveal that the graphene platelet distribution pattern of the face sheets plays an important role to decrease the transverse shear stress of the core by dispersing more graphene platelets near surfaces of the face sheets (X-GPLRC). So, reducing the local deflection of the top face sheet tends to be much more safety of the soft core from any failure. Besides, sandwich beams with a lower weight fraction of graphene platelets in face sheets that are symmetrically distributed in such a way, called O-GPLRC, are also less sensitive to the nonlinear deformation.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 6001
Author(s):  
Ehsan Mirnateghi ◽  
Ayman S. Mosallam

This paper presents results of a study that focuses on developing a genetic algorithm (GA) for multi-criteria optimization of orthotropic, energy-efficient cementitious composite sandwich panels (CSP). The current design concept of all commercially produced CSP systems is based on the assumption that such panels are treated as doubly reinforced sections without the consideration of the three-dimensional truss contribution of the orthotropic panel system. This leads to uneconomical design and underestimating both the strength and stiffness of such system. In this study, two of the most common types of commercially produced sandwich were evaluated both numerically and experimentally and results were used as basis for developing a genetic algorithm optimization process using numerical modeling simulations. In order to develop a sandwich panel with high structural performance, design optimization techniques are needed to achieve higher composite action, while maintaining the favorable features of such panels such as lightweight and high thermal insulation. The study involves both linear and nonlinear finite element analyses and parametric optimization. The verification and calibration of the numerical models is based on full-scale experimental results that were performed on two types of commercially produced sandwich panels under different loading scenarios. The genetic algorithm technique is used for optimization to identify an optimum design of the cementitious composite sandwich panels. The GA technique combines Darwin’s principle of survival of fittest and a structured information exchange using randomized crossover operators to evolve an optimum design for the cementitious sandwich panel. Parameters evaluated in the study include: (i) shear connectors’ geometry, its volume fraction and distribution; (ii) exterior cementitious face sheets thickness and (iii) size and geometry steel wires reinforcements. The proposed optimization method succeeded in reducing cost of materials of CSP by about 48% using genetic algorithm methodology. In addition, an optimized design for CSP is proposed that resulted in increasing the panel’s thermal resistance by 40% as compared to existing panels, while meeting ACI Code structural design criteria. Pareto-optimal front and Pareto-optimal solutions have been identified. Correlation between the design variables is also verified and design recommendation are proposed.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5353-5359
Author(s):  
MICHAL SKOVAJSA ◽  
◽  
FRANTISEK SEDLACEK ◽  
MARTIN MRAZEK ◽  
◽  
...  

This paper deal with comparison of mechanical properties of composite sandwich panel with aluminium honeycomb core which is determined by experimental measurement, analytic calculation and numerical simulation. The goal was to compared four composite sandwich panels. The composite sandwich panels were made of two different aluminium honeycomb cores with density 32 and 72 kg.m-3 and two different layup of skin with 4 and 5 layers. The comparison was performed on a three-point bend test with support span 400 mm. This paper confirms the possibility of a very precise design of a composite sandwich panel with an aluminium honeycomb core using analytical calculation and numerical simulation.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 675
Author(s):  
Xi Zhang ◽  
Qingmin Chen ◽  
Jiaxin Gao ◽  
Mingwei Wang ◽  
Ya Zhang ◽  
...  

This paper presents a numerical investigation on the plastic forming of doubly curved surfaces of aluminum foam sandwich panel (AFSP). A mesoscopic 3D Voronoi model that can describe the structure of closed-cell aluminum foam relatively realistically was established, and a series of numerical simulations using the model of the sandwich panel with a Voronoi foam core were conducted on the plastic forming of two typical doubly curved surfaces including spherical and saddle-shaped surfaces of AFSPs to analyze the deformation behaviors and the forming defects in detail. Multi-point forming experiments of spherical and saddle-shaped AFSPs with different target radii were implemented and the doubly curved panels with good forming quality were obtained. The simulated results of the surface illumination maps, the face sheet profiles, and the maximum strain differences in selected areas of the face sheet and the experimental results indicated that the Voronoi AFSP model can reflect the actual defects occurred in the plastic forming of doubly curved sandwich panels, and the high forming accuracy of the sandwich panel model was also demonstrated in terms of the shape error and the thickness variation.


1998 ◽  
Vol 120 (2) ◽  
pp. 186-194 ◽  
Author(s):  
T. Y. Reddy ◽  
H. M. Wen ◽  
S. R. Reid ◽  
P. D. Soden

The results of penetration and perforation tests carried out on composite sandwich panels with GRP skins and PVC foam cores using hemispherical-ended and conical-nosed indenters/projectiles under quasi-static, drop-weight, and ballistic impact conditions, with impact velocities up to 305 m/s, are described. Load-displacement characteristics under quasi-static loading are presented and the ballistic limits as well as perforation energies are determined. A classification of the sandwich panel responses based on the panel thickness-to-projectile diameter ratio is deduced. General empirical formulas that predict the dynamic perforation energies for FRP laminates and composite sandwich panels loaded by hemispherical-ended projectiles are derived. The empirical equations correlate well with available experimental data. It is shown that, to a first approximation, the formulas obtained for hemispherical-ended projectiles are also applicable to conical-nosed projectiles.


Sign in / Sign up

Export Citation Format

Share Document