Domain Dynamics of C-Axis Polarization in Bismuth Titanate Crystals

2007 ◽  
Vol 350 ◽  
pp. 69-72 ◽  
Author(s):  
Yuuki Kitanaka ◽  
Yuji Noguchi ◽  
Masaru Miyayama

Polarization switching and domain dynamics in unpoled and poled crystals of bismuth titanate by applying electric field along the crystallographic c axis were investigated through polarization measurements and domain observations by optical microscope and piezoelectric force microscope. Poled crystals showed a well-saturated polarization hysteresis with a remanent polarization of 4.4 μC/cm2 and a coercive field of 4.7 kV/cm. Domain observations reveal that lenticular domain acts as an initial nucleus during polarization switching. The sidewise motion of the lenticular-domain walls and resultant single domain state were easily established for the poled crystals, while the lenticular domains observed in unpoled crystals were clamped even though a high electric field was applied to them.

Author(s):  
S. H. Baek ◽  
C. B. Eom

As a room temperature multi-ferroic with coexisting anti-ferromagnetic, ferroelectric and ferroelastic orders, BiFeO 3 has been extensively studied to realize magnetoelectric devices that enable manipulation of magnetic ordering by an electric field. Moreover, BiFeO 3 is a promising candidate for ferroelectric memory devices because it has the largest remanent polarization ( P r >100 μC cm −2 ) of all ferroelectric materials. For these applications, controlling polarization switching by an electric field plays a crucial role. However, BiFeO 3 has a complex switching behaviour owing to the rhombohedral symmetry: ferroelastic (71 ° , 109 ° ) and ferroelectric (180 ° ) switching. Furthermore, the polarization is switched through a multi-step process: 180 ° switching occurs through three sequential 71 ° switching steps. By using monodomain BiFeO 3 thin-film heterostructures, we correlated such multi-step switching to the macroscopically observed reliability issues of potential devices such as retention and fatigue. We overcame the retention problem (i.e. elastic back-switching of the 71 ° switched area) using monodomain BiFeO 3 islands. Furthermore, we suppressed the fatigue problem of 180 ° switching, i.e. loss of switchable polarization with switching cycles, using a single 71 ° switching path. Our results provide a framework for exploring a route to reliably control multiple-order parameters coupled to ferroelastic order in other rhombohedral and lower-symmetry materials.


2009 ◽  
Vol 421-422 ◽  
pp. 411-414 ◽  
Author(s):  
Muangjai Unruan ◽  
Thanapong Sareein ◽  
Anurak Prasatkhetragarn ◽  
Athipong Ngamjarurojana ◽  
Supon Ananta ◽  
...  

Effects of perpendicular compressive stress on the ferroelectric properties of ceramics in PZT-PZN system were investigated. The (1-x)Pb(Zr1/2Ti1/2)O3-xPb(Zn1/3Nb2/3)O3 or (1-x)PZT- (x)PZN (x = 0.1-0.5) ceramics were prepared by a conventional mixed-oxide method. The ferroelectric properties were measured under compressive stress applied perpendicular to an electric field direction at stress levels up to 90 MPa using a compressometer in conjunction with a modified Sawyer-Tower circuit. It was found that with increasing compressive stress the area of the ferroelectric hysteresis (P-E) loops, the maximum polarization (Pmax), and the remanent polarization (Pr) decreased, while the coercive field (Ec) remained relatively constant. These results were interpreted through the domain switching, clamping of domain walls and de-poling mechanisms.


2020 ◽  
Vol 62 (10) ◽  
pp. 1670
Author(s):  
А.Ф. Вакуленко ◽  
С.Б. Вахрушев ◽  
Е.Ю. Королева

The method of the study of the polarization switching processes in ferroelectrics by an external electric field using synchronous measurement of an electric impedance and piezoelectric response is described. Using the developed technique, the switching processes in the electric field-induced ferroelectric phase (FE) of lead magnoniobate are studied. It is shown that, upon the initial occurrence of the SE phase, a multidomain structure with a weak piezoelectric response is formed. A change in the direction of the external field leads to polarization switching, and the switching process passes through an intermediate glassy phase. raining a sample by repeated switching leads to a sharp increase in the piezoelectric response, which can be attributed to the formation of a single-domain state.


2006 ◽  
Vol 320 ◽  
pp. 27-30 ◽  
Author(s):  
Shinichi Katayama ◽  
Yuji Noguchi ◽  
Masaru Miyayama

Influence of annealing on the domain structures of bismuth titanate (BiT) and rare-earth (La and Nd)-substituted BiT crystals (BLT or BNT) were investigated by optical microscope and piezoresponse force microscope (PFM). Annealing of BiT at 950°C in air significantly decreased the number of striped 90° domain walls, while charged 180° domain walls were still present in the crystals after the annealing. The annealing for the crystals of BLT and BNT at the same condition did not change their 90° domain structures. PFM observations indicated that antiphase domain boundaries in BLT play an important role in the formation of 90° domain structures.


2007 ◽  
Vol 350 ◽  
pp. 89-92
Author(s):  
Keisuke Yokoh ◽  
Tomomitsu Muraishi ◽  
Song Min Nam ◽  
Hirofumi Kakemoto ◽  
Takaaki Tsurumi ◽  
...  

To induce fine engineered domain configurations into potassium niobate (KNbO3) single crystals, two kinds of methods were performed, i.e., (1) high DC electric field exposure along the opposite direction of polarization of KNbO3 single-domain crystals at room temperature, and (2) introduction of randomly oriented fine domain configuration by heat treatment at 700 °C and then high DC electric field exposure along [001]c direction of KNbO3 multidomain crystals at room temperature. When the method (1) was performed, finally, the poled KNbO3 crystals became to single-domain state again through the formation of multidomain state. On the other hand, the KNbO3 multidomain crystals were obtained by using the method (2), and an enhancement of piezoelectric-related properties was observed.


Author(s):  
Lyudmila Kokhanchik ◽  
Evgenii Emelin ◽  
Vadim Vladimirovch Sirotkin ◽  
Alexander Svintsov

Abstract The focus of the study was to investigate the peculiarities of the domains created by electron beam (e-beam) in a surface layer of congruent lithium niobate, which comparable to a depth of electron beam charge penetration. Direct e-beam writing (DEBW) of different domain structures with a scanning electron microscope was performed on the polar -Z cut. Accelerating voltage 15 kV and e-beam current 100 pA were applied. Different patterns of local irradiated squares were used to create domain structures and single domains. No domain contrast was observed by the PFM technique. Based on chemical etching, it was found that the vertices of the domains created do not reach the surface level. The average deepening of the domain vertices was several hundred nanometers and varied depending on the irradiation dose and the location of the irradiated areas (squares) relative to each other. Computer simulation was applied to analyze the spatial distribution of the electric field in the various irradiated patterns. The deepening was explained by the fact that in the near-surface layer there is a sign inversion of the normal component of the electric field strength vector, which controls the domain formation during DEBW. Thus, with the help of e-beam, domains were created completely located in the bulk, in contrast to the domains that are nucleated on the surface of the -Z cut during the polarization inversion with AFM tip. The detected deepening of e-beam domains suggests the possibility of creating the “head-to-head” domain walls in the near-surface layer lithium niobate by DEBW.


2021 ◽  
Author(s):  
Jing Wang ◽  
Jing Ma ◽  
Houbing Huang ◽  
Ji Ma ◽  
Hasnain Jafri ◽  
...  

Abstract The electronic conductivities of ferroelectric domain walls have been extensively explored over the past decade for potential nanoelectronic applications. However, the realization of logic devices based on ferroelectric domain walls requires reliable and flexible control of the domain-wall configuration and conduction path. Here, we demonstrate electric-field-controlled stable and repeatable on-and-off switching of conductive domain walls within topologically confined vertex domains naturally formed in self-assembled ferroelectric nano-islands. Using a combination of piezoresponse force microscopy, conductive atomic force microscopy, and phase-field simulations, we show that on-off switching is accomplished through reversible transformations between charged and neutral domain walls via electric-field-controlled domain-wall reconfiguration. By analogy to logic processing, we propose programmable logic gates (such as NOT, OR, AND and their derivatives) and logic circuits (such as fan-out) based on reconfigurable conductive domain walls. Our work provides a potentially viable platform for programmable all-electric logic based on a ferroelectric domain-wall network with low energy consumption.


2019 ◽  
Vol 790 ◽  
pp. 587-596 ◽  
Author(s):  
Jesuraj Anthoniappen ◽  
Wei Sea Chang ◽  
Flora Mae Ruiz ◽  
Chi-Shun Tu ◽  
Carvyn Tutong Blaise ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1223 ◽  
Author(s):  
Daria Vasileva ◽  
Semen Vasilev ◽  
Andrei L. Kholkin ◽  
Vladimir Ya. Shur

Piezoelectric materials based on lead zirconate titanate are widely used in sensors and actuators. However, their application is limited because of high processing temperature, brittleness, lack of conformal deposition and, more importantly, intrinsic incompatibility with biological environments. Recent studies on bioorganic piezoelectrics have demonstrated their potential in these applications, essentially due to using the same building blocks as those used by nature. In this work, we used piezoresponse force microscopy (PFM) to study the domain structures and polarization reversal in the smallest amino acid glycine, which recently attracted a lot of attention due to its strong shear piezoelectric activity. In this uniaxial ferroelectric, a diverse domain structure that includes both 180° and charged domain walls was observed, as well as domain wall kinks related to peculiar growth and crystallographic structure of this material. Local polarization switching was studied by applying a bias voltage to the PFM tip, and the possibility to control the resulting domain structure was demonstrated. This study has shown that the as-grown domain structure and changes in the electric field in glycine are qualitatively similar to those found in the uniaxial inorganic ferroelectrics.


2018 ◽  
Vol 185 ◽  
pp. 07001
Author(s):  
Daria Kulikova ◽  
Timur Gareev ◽  
Elena Nikolaeva ◽  
Alexander Pyatakov

The magnetoelectric properties of micromagnetic structures in iron garnet films manifest themselves in electrically induced displacement of domain walls and magnetic bubble domains nucleation. In this paper we found the condition of the electrically induced bubble domain nucleation in terms of critical electric field, magnetic bias and temperature. The collapse of magnetic bubble domain under the action of electric field pulse is also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document