Release of Growth Factors from Gelatin Microsphere/CaP Composites

2007 ◽  
Vol 361-363 ◽  
pp. 527-530 ◽  
Author(s):  
W.J.E.M. Habraken ◽  
O.C. Boerman ◽  
Joop G.C. Wolke ◽  
Antonious G. Mikos ◽  
John A. Jansen

Composites of gelatin microspheres and injectable calcium phosphate cement were prepared to increase cement resorption and improve tissue ingrowth. To further enhance these properties, osteoinductive growth factors can be introduced into the microspheres. In this study, the in vitro release of preset gelatin microsphere/CaP composites was followed for 6 weeks by use of 125I-labelled rhBMP-2, rhTGF-β and rh-bFGF. Results for all gelatin microsphere composites showed a release curve that consisted of a small burst, followed by a sustained release. The magnitude of the sustained release was dependent on the growth factor used, and showed a slight dependency on the loading method and type of gelatin. Furthermore, no differences in release pattern or efficiency were found when growth factor concentration increased.

Author(s):  
Chaoyu Liu ◽  
Xiaohua Li ◽  
Qilong Zhao ◽  
Yuancai Xie ◽  
Xumei Yao ◽  
...  

AbstractElectrospun fibrous scaffolds capable of providing dual growth factor delivery in a controlled manner have distinctive advantages for tissue engineering. In this study, we have investigated the formation, structure, and characteristics/properties of fibrous bicomponent scaffolds for the dual delivery of glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) for peripheral nerve tissue regeneration. GDNF and NGF were incorporated into core-shell structured poly(lactic-co-glycolic acid) (PLGA) and poly (d,l-lactic acid) (PDLLA) nanofibers, respectively, through emulsion electrospinning. Using dual-source dual-power electrospinning, bicomponent scaffolds composed of GDNF/PLGA fibers and NGF/PDLLA fibers with different fiber component ratios were produced. The structure, properties, and in vitro release behavior of mono- and bicomponent scaffolds were systematically investigated. Concurrent and sustained release of GDNF and NGF from bicomponent scaffolds was achieved and their release profiles could be tuned. In vitro biological investigations were conducted. Rat pheochromocytoma cells were found to attach, spread, and proliferate on all scaffolds. The release of growth factors from scaffolds could induce much improved neurite outgrowth and neural differentiation. GDNF and NGF released from GDNF/PLGA scaffolds and NGF/PDLLA scaffolds, respectively, could induce dose-dependent neural differentiation separately. GDNF and NGF released from bicomponent scaffolds exerted a synergistic effect on promoting neural differentiation.


2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Shravanthy Ravi ◽  
Muthukumar Santhanakrishnan

Abstract Background Platelet concentrates have been popularly used in regenerative periodontal therapy as they are autologous in origin and they provide a supernatural concentration of platelets, growth factors and leukocytes. The release profile of various growth factors is considered important during the various phases of wound healing with the most important being the inflammatory phase where the release of the growth factors help in recruitment of cells and in collagen production. With the more recent modifications of PRF namely A-PRF and T-PRF, the mechanical and chemical degradation properties have also improved. The aim of the present study was to correlate the release profile of PDGF-AA from various forms of platelet concentrates (L-PRF, A-PRF, T-PRF) based on their mechanical and chemical properties. Methods Blood samples were drawn from 2 male and 3 female systemically healthy patients between 20 and 25 years of age who were about to undergo periodontal regeneration for PRF preparation. The blood sample was immediately centrifuged using a table top centrifuge (Remi R4C) at 1060 rpm (208 x g) for 14 min for A-PRF preparation, 1960 rpm (708 x g) for 12 min for L-PRF preparation and 1960 rpm (708 x g) for 12 min in titanium tubes for T-PRF preparation. Tensile test was performed using universal testing machine. The in vitro degradation test of the prepared PRF membranes were conducted by placing the PRF membrane in 10 ml of pH 7.4 PBS on an orbital shaker set at 50 rpm. SEM evaluation of the PRF membrane was done under both low and high magnification. In order to determine the amount of released growth factor PDGF-AA at 15 min, 60 min, 8 h, 1 day, 3 days, and 10 days, samples were placed into a shaking incubator at 37 °C to allow for growth factor release into the culture media. Results On comparing the three PRF membranes, it was found that T-PRF contained the maximum tensile strength (404.61 ± 5.92 MPa) and modulus of elasticity (151.9 ± 6.92 MPa). Statistically significant differences between the three groups were found on comparing the groups for their mechanical properties. In the degradation test, it was found that the maximum amount of degradation was found in L-PRF (85.75%), followed by A-PRF (84.18%) and the least was found in T-PRF (82.27%). T-PRF released the highest amount of PDGF-AA (6060.4 pg/ml) at early time points when compared to A-PRF (5935.3 pg/ml). While T-PRF had rapid release of PDGF-AA, A-PRF had a sustained release of growth factors released at later time points. Conclusion Results from the present study indicate that A-PRF is the most favourable form of platelet concentrate in regenerative periodontal therapy as it has a sustained release of growth factors over time.


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
Nagratna Dhople ◽  
P N Dandag ◽  
A P Gadad ◽  
C K Pandey ◽  
Masthiholimath V S

A gastroretentive sustained release system of itopride hydrochloride was formulated to increase the gastric residence time and modulate its release behavior. Itopride hydrochloride is a prokinetic drug used in the treatment of gastroeosophageal reflux disease, Non-ulcer dyspepsia and as an antiemetic. Hence, itopride hydrochloride beads were prepared by emulsion gelation method by employing low methoxy pectin and sodium alginate as sustained release polymers in three different ratios alone and in combination and sunflower oil was used to enable floating property to the beads. The effect of variation in polymer and their concentration was investigated. The beads were evaluated for production yield, particle size, swelling index, density measurement, buoyancy, drug content, drug entrapment efficiency, in vitro release characteristics and release kinetic study. Based on drug entrapment efficiency, buoyancy, swelling and in vitro release, F9 was selected as the optimized formulation. F9 was further subjected to surface morphology by SEM, in vitro release comparison with marketed formulation, in vivo floating study in rabbits and stability study for 90 days. In vitro release follows zero order and fitted in Korsmeyer peppas model (Non-Fickian release). Therefore, the rate of drug release is due to the combined effect of drug diffusion and polymer swelling. The in vivo X-ray studies revealed that the beads were floating in the rabbit stomach up to 10 hours. Thus, it was concluded that the sustained release formulation containing itopride hydrochloride was found to improve patient compliance, minimize the side effects and decrease the frequency of administration.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2020 ◽  
Vol 21 (15) ◽  
pp. 1688-1698
Author(s):  
Germeen N.S. Girgis

Purpose: The work was performed to investigate the feasibility of preparing ocular inserts loaded with Poly-ε-Caprolactone (PCL) nanoparticles as a sustained ocular delivery system. Methods: First, Atorvastatin Calcium-Poly-ε-Caprolactone (ATC-PCL) nanoparticles were prepared and characterized. Then, the optimized nanoparticles were loaded within inserts formulated with Methylcellulose (MC) and Polyvinyl Alcohol (PVA) by a solvent casting technique and evaluated physically, for in-vitro drug release profile. Finally, an in-vivo study was performed on the selected formulation to prove non-irritability and sustained ocular anti-inflammatory efficacy compared with free drug-loaded ocuserts. Results: The results revealed (ATC-PCL) nanoparticles prepared with 0.5% pluronic F127 were optimized with 181.72±3.6 nm particle size, 0.12±0.02 (PDI) analysis, -27.4± 0.69 mV zeta potential and 62.41%±4.7% entrapment efficiency. Nanoparticles loaded ocuserts manifested compatibility between drug and formulation polymers. Moreover, formulations complied with average weight 0.055±0.002 to 0.143±0.023 mg, and accepted pH. ATC-PCL nanoparticles loaded inserts prepared by 5% MC showed more sustained, prolonged in-vitro release over 24h. In-vivo study emphasized non-irritability, ocular anti-inflammatory effectiveness represented by smaller lid closure scores, and statistically significant lowering in PMN count after 3h. Conclusion: These findings proposed a possibly simple, new and affordable price technique to prepare promising (ATC-PCL) nanoparticles loaded inserts to achieve sustained release with prolonged antiinflammatory efficacy.


2020 ◽  
pp. 1-9
Author(s):  
Yunhong Wang ◽  
Rong Hu ◽  
Yanlei Guo ◽  
Weihan Qin ◽  
Xiaomei Zhang ◽  
...  

OBJECTIVE: In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS: The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS: The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION: The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.


2011 ◽  
Vol 47 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Sathis Kumar Dinakaran ◽  
Santhos Kumar ◽  
David Banji ◽  
Harani Avasarala ◽  
Venkateshwar Rao

The purpose of this research study was to establish ziprasidone HCl NR 40 mg and trihexyphenidyl HCl SR 4mg in the form of bi-layer sustained release floating tablets. The tablets were prepared using sodium HPMC K4M / HPMC K15M as bio-adhesive polymers and sodium bicarbonate acting as a floating layer. Tablets were evaluated based on different parameters such as thickness, hardness, friability, weight variation, in vitro dissolution studies, content of active ingredient and IR studies. The physico-chemical properties of the finished product complied with the specifications. In vitro release from the formulation was studied as per the USP XXIII dissolution procedure. The formulations gave a normal release effect followed by sustained release for 12 h which indicates bimodal release of ziprasidone HCl from the matrix tablets. The data obtained was fitted to Peppas models. Analysis of n values of the Korsmeyer equation indicated that the drug release involved non-diffusional mechanisms. By the present study, it can be concluded that bi-layer tablets of ziprasidone HCl and trihexyphenidyl HCl will be a useful strategy for extending the metabolism and improving the bioavailability of Ziprasidone HCl and Trihexyphenidyl HCl.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (03) ◽  
pp. 61-67
Author(s):  
P. P Dighe ◽  
H. M Tank ◽  

Pulmonary arterial hypertension (PAH) means high blood pressure in the lungs caused by obstruction in the small arteries of the lungs.The current study involves the fabrication of oral matrix sustained release tablet of bosentan monohydrate, a dual endothelin receptor antagonist, the optimisation of its in vitro release and characterisation. Methocel K4M PremiumDC2, a directly compressible HPMC grade, has been used as the sustained release polymer. Pregelatinised starch is used as a diluent and release modifier and sodium lauryl sulphate as a solubiliser. The influence of the above variables on drug release is measured using a 23 factorial design using design expert software. Surface response plots show significant interaction among the formulation variables, thus aiding in optimization of bilayer tablet.


Author(s):  
Mayuri B. Patil ◽  
Avish D. Maru ◽  
Jayshree S. Bhadane

The aim of the present study was to design and evaluate bilayer tablets of metformin hydrochloride as sustained release form for the treatment of Type-II diabetes mellitus. The basic aim of any Bi-layer tablet formulation is to separate physically or chemically incompatible ingredients and to produce repeat action or prolonged action of tablet. They are many drugs for treating type-II diabetes. Sulphonyl urea and biguanides are used commonly by a wide section of patients. Melt granulation process was used for the formulation of sustained comprising metformin layer and wet granulation of immediate comprising layer of glimepiride. The precompression studies like bulk density, tapped density, angle of repose, compressible index and post formulation studies includes weight variation, hardness, thickness, friability and dissolution study. The in-vitro release profile of Glimepiride was dissolved within 45 min, and Metformin Hydrochloride was able to release more than 12 hrs. They all the formulation was optimized formula due to its higher rate of dissolution and collate all other parameters with the official specifications.


Sign in / Sign up

Export Citation Format

Share Document