Preparation of Ag Nanoparticles Colloid by Pulsed Laser Ablation in Distilled Water

2008 ◽  
Vol 373-374 ◽  
pp. 346-349 ◽  
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
P.H. Tang ◽  
J. Wang ◽  
Guo Zhong Chai ◽  
...  

The Ag nanoparticles colloid was prepared by pulsed laser ablation for different time in 10 ml distilled water without any surface active agent, and it was analysed by means of UV-visible spectrophotometer and transmission electron microscopy (TEM). The results showed that the ablation efficiency and absorbance increased fast and shift to higher energies with increasing ablation time from 5 to 10 min, then increased slowly from 10 to 20 min, and increased fast again from 20 to 25 min. The morphologies of most Ag nanoparticles were nearly spherical. The average diameter and its distribution decreased from 5 to 7.5 min, then increased from 7.5 to 15 min, and decreased from 15 to 25 min.

2011 ◽  
Vol 415-417 ◽  
pp. 747-750
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
Chao Wang

In order to study the effects of laser fluence on silver nanoparticles colloid, the silver nanoparticles colloid was prepared by pulsed laser ablation of silver target for 10min in distilled water at different laser fluence. The particles size,morphologies and absorption spectroscopy of the obtained nanoparticles colloid were characterized by ultraviolet to visible (UV-Vis) spectrometer and transmission electron microscopy (TEM), the average diameter and its distribution were analyzed by Image-ProPlus software. The results shown that the average diameter of the silver nanoparticles prepared at the laser fluence of 4.2J/cm2 was the smallest (D=17.54nm), also, the distribution of particle size was narrowest (=36.86nm) and the morphologies were more homogeneous. It was confirmed that the nanoparticles size and shape could be controlled by pulsed laser ablation parameters.


2012 ◽  
Vol 538-541 ◽  
pp. 1888-1891 ◽  
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
Chao Wang ◽  
Wang Zhao He

The silver nanoparticles colloid was prepared by pulsed laser ablation in distilled water under various laser repetition rates. The particles size, morphologies and absorption spectroscopy of the obtained nanoparticles colloids were characterized by ultraviolet to visible (UV-Vis) spectrometer and transmission electron microscopy (TEM). The average diameter and its distribution were analyzed by Image-ProPlus software. The results showed that the average diameter of the silver nanoparticles prepared at the laser repetition rate of 10 HZ was the smallest (D=29.75 nm), also, the distribution of particle size decreases with increasing the laser repetition rate.


2019 ◽  
Vol 15 (34) ◽  
pp. 162-170
Author(s):  
Ammar M. Noori

Ag nanoparticles were prepared using Nd:YAG laser from Ag matel in distilled water using different energies laser (100 and 600) mJ using 200 pulses, and study the effect of the preparation conditions on the structural characteristics of and then study the effect of nanoparticles on the rate of killing the two types of bacteria particles (Staph and E.coli). The goal is to prepare the nanoparticle effectively used to kill bacteria.


2011 ◽  
Vol 415-417 ◽  
pp. 648-651 ◽  
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
Chao Wang

Ag, Au and Ti metal nanoparticles colloids have been prepared by pulsed laser ablation in various liquids. The particle size and morphology of the obtained nanoparticles colloids were characterized by transmission electron microscopy (TEM), the average diameter and its distribution were analyzed by Image-ProPlus software. The results showed that the Au nanoparticles were of the best characterization, the average diameter was the smallest (D=8.79 nm), and also, the distribution of particle size was the narrowest (=17.5 nm) and the morphologies were more homogeneous.


2010 ◽  
Vol 123-125 ◽  
pp. 675-678 ◽  
Author(s):  
Bing Xu ◽  
Ren Guo Song

Ag nanoparticles colloids have been fabricated by pulsed laser ablation in various liquids. The particle size, morphology and absorption spectroscopy of the obtained nanoparticles colloids were characterized by ultraviolet to visible (UV-Vis) spectrophotometer and transmission electron microscopy (TEM), the average diameter and its distribution were analyzed by Image-ProPlus software. The results showed that the Ag nanoparticles with best characterization are those produced at the repetition rate of 10Hz and laser fluence of 4.2J/cm2 by ablating for 7.5min in the distilled water, with the least average diameter(D=14.48 nm), the narrowest distribution of particles size (=25.8 nm) and more homogeneous morphologies. The effects of experimental conditions on the silver nanoparticles colloid can be explained by fragmentation and melting induced aggregation of colloidal particles by self-absorption of laser pulses.


Author(s):  
Pankaj Koinkar ◽  
Kohei Sasaki ◽  
Tetsuro Katayama ◽  
Akihiro Furube ◽  
Satoshi Sugano

Two dimensional (2D) materials are widely attracting the interest of researchers due to their unique crystal structure and diverse properties. In the present work, tungsten disulfide (WS[Formula: see text] nanorods were synthesized by a simple method of pulsed laser ablation in liquid (PLAL) environment. The prepared WS2 are analyzed by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV-visible spectroscopy (UV-vis) and Raman spectroscopy to confirm the surface morphology, phase and structure. A possible growth mechanism of WS2 is proposed. This study indicates new door for the preparation of 2D materials with specific morphology.


2021 ◽  
Author(s):  
Nurfina Yudasari ◽  
Rahma Anugrahwidya ◽  
Maria Margaretha Suliyanti ◽  
Dahlang Tahir ◽  
Cuk Imawan ◽  
...  

1995 ◽  
Vol 10 (4) ◽  
pp. 791-794 ◽  
Author(s):  
S. Stemmer ◽  
S.K. Streiffer ◽  
W-Y. Hsu ◽  
F. Ernst ◽  
R. Raj ◽  
...  

We have used conventional and high-resolution transmission electron microscopy to investigate the microstruture of epitaxial, ferroelectric PbTiO3 films grown by pulsed laser ablation on (001) MgO single crystals, and on MgO covered with epitaxial Pt or SrTiO3. Pronounced variations are found in the widths and lengths of a-axis-oriented domains in these films, although the volume fraction of a-axis-oriented material varies only weakly for the different types of samples. In addition, the films deposited onto Pt-coated MgO have a larger grain size than those deposited onto bare MgO or SrTiO3/MgO. Possible reasons for the variations in the distribution of a-axis-oriented material in these samples include differences in the elastic properties and electrical conductivities of the different substrate combinations.


Sign in / Sign up

Export Citation Format

Share Document