Effect of Laser Repetition Rate on Silver Nanoparticles Colloid

2012 ◽  
Vol 538-541 ◽  
pp. 1888-1891 ◽  
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
Chao Wang ◽  
Wang Zhao He

The silver nanoparticles colloid was prepared by pulsed laser ablation in distilled water under various laser repetition rates. The particles size, morphologies and absorption spectroscopy of the obtained nanoparticles colloids were characterized by ultraviolet to visible (UV-Vis) spectrometer and transmission electron microscopy (TEM). The average diameter and its distribution were analyzed by Image-ProPlus software. The results showed that the average diameter of the silver nanoparticles prepared at the laser repetition rate of 10 HZ was the smallest (D=29.75 nm), also, the distribution of particle size decreases with increasing the laser repetition rate.

2011 ◽  
Vol 415-417 ◽  
pp. 747-750
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
Chao Wang

In order to study the effects of laser fluence on silver nanoparticles colloid, the silver nanoparticles colloid was prepared by pulsed laser ablation of silver target for 10min in distilled water at different laser fluence. The particles size,morphologies and absorption spectroscopy of the obtained nanoparticles colloid were characterized by ultraviolet to visible (UV-Vis) spectrometer and transmission electron microscopy (TEM), the average diameter and its distribution were analyzed by Image-ProPlus software. The results shown that the average diameter of the silver nanoparticles prepared at the laser fluence of 4.2J/cm2 was the smallest (D=17.54nm), also, the distribution of particle size was narrowest (=36.86nm) and the morphologies were more homogeneous. It was confirmed that the nanoparticles size and shape could be controlled by pulsed laser ablation parameters.


1995 ◽  
Vol 10 (4) ◽  
pp. 791-794 ◽  
Author(s):  
S. Stemmer ◽  
S.K. Streiffer ◽  
W-Y. Hsu ◽  
F. Ernst ◽  
R. Raj ◽  
...  

We have used conventional and high-resolution transmission electron microscopy to investigate the microstruture of epitaxial, ferroelectric PbTiO3 films grown by pulsed laser ablation on (001) MgO single crystals, and on MgO covered with epitaxial Pt or SrTiO3. Pronounced variations are found in the widths and lengths of a-axis-oriented domains in these films, although the volume fraction of a-axis-oriented material varies only weakly for the different types of samples. In addition, the films deposited onto Pt-coated MgO have a larger grain size than those deposited onto bare MgO or SrTiO3/MgO. Possible reasons for the variations in the distribution of a-axis-oriented material in these samples include differences in the elastic properties and electrical conductivities of the different substrate combinations.


2008 ◽  
Vol 373-374 ◽  
pp. 346-349 ◽  
Author(s):  
Bing Xu ◽  
Ren Guo Song ◽  
P.H. Tang ◽  
J. Wang ◽  
Guo Zhong Chai ◽  
...  

The Ag nanoparticles colloid was prepared by pulsed laser ablation for different time in 10 ml distilled water without any surface active agent, and it was analysed by means of UV-visible spectrophotometer and transmission electron microscopy (TEM). The results showed that the ablation efficiency and absorbance increased fast and shift to higher energies with increasing ablation time from 5 to 10 min, then increased slowly from 10 to 20 min, and increased fast again from 20 to 25 min. The morphologies of most Ag nanoparticles were nearly spherical. The average diameter and its distribution decreased from 5 to 7.5 min, then increased from 7.5 to 15 min, and decreased from 15 to 25 min.


2004 ◽  
Vol 19 (4) ◽  
pp. 1118-1125 ◽  
Author(s):  
S. Bysakh ◽  
K. Mitsuishi ◽  
M. Song ◽  
K. Furuya ◽  
K. Chattopadhyay

Thin films with a nominal composition close to Ti62.5Si37.5 were deposited on NaCl substrate at room temperature by pulsed laser ablation to study the evolution of the intermetallic compound Ti5Si3 using a combination of high-resolution and in situ transmission electron microscopy. The as-deposited amorphous films contain Ti-rich clusters, which influence the phase evolution and the decomposition behavior of the amorphous film. These clusters influence the nucleation of a metastable fcc Ti solid solution (ao = 0.433 nm) with composition richer in Ti than Ti62.5Si37.5 as the first phase to crystallize at 773 K. The Ti5Si3 nanocrystals form later, and even at 1073 K they coexist with fine fcc Ti-rich nanocrystals. Subsequent Ar+ ion-milling of the crystallized film results in a loss of silicon. The composition change leads to the dissolution of the Ti5Si3 nanocrystals and evolution of a new metastable Ti-rich fcc phase (ao= 0.408 nm).


Author(s):  
Pankaj Koinkar ◽  
Kohei Sasaki ◽  
Tetsuro Katayama ◽  
Akihiro Furube ◽  
Satoshi Sugano

Two dimensional (2D) materials are widely attracting the interest of researchers due to their unique crystal structure and diverse properties. In the present work, tungsten disulfide (WS[Formula: see text] nanorods were synthesized by a simple method of pulsed laser ablation in liquid (PLAL) environment. The prepared WS2 are analyzed by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV-visible spectroscopy (UV-vis) and Raman spectroscopy to confirm the surface morphology, phase and structure. A possible growth mechanism of WS2 is proposed. This study indicates new door for the preparation of 2D materials with specific morphology.


1998 ◽  
Vol 526 ◽  
Author(s):  
R. Kalyanaraman ◽  
S. Oktyabrsky ◽  
K. Jagannadham ◽  
J. Narayan

AbstractThe atomic structure of grain boundaries in pulsed laser deposited YBCO/MgO thin films have been studied using transmission electron microscopy. The films have perfect texturing with YBCO(001)//MgO(001), giving rise to low-angle [001] tilt boundaries from the grains with the c-axis normal to substrate surface. Low angle grain boundaries have been found to be aligned preferentially along (100) and (110) interface planes. The energy of (110) boundary planes described by an alternating array of [100] and [010] dislocation is found to be comparable to the energy of a (100) boundary. The existence of these split dislocations is shown to further reduce the theoretical current densities of these boundaries indicating that (110) boundaries carry less current as compared to (100) boundaries of the same misorientation angle. Further, Z-contrast transmission electron microscopy of a 42° asymmetric high-angle grain boundary of YBCO shows evidence for the existence of boundary fragments and a reduced atomic density along the boundary plane


Author(s):  
Nabraj Bhattarai ◽  
Subarna Khanal ◽  
Pushpa Raj Pudasaini ◽  
Shanna Pahl ◽  
Dulce Romero-Urbina

Citrate stabilized silver (Ag) colloidal solution were synthesized and characterized for crystallographic and surface properties by using transmission electron microscopy (TEM) and zeta potential measurement techniques. TEM investigation depicted the size of Ago ranges from 5 to 50 nm with smaller particles having single crystal structure while larger particles with structural defects (such as multiply twinned, high coalescence and Moire patterns). ?-potential measurement confirms the presence of Ag+ in nAg stock solution. The shift in ?-potential measurement by +25.1 mV in the filtered solution suggests the presence of Ag+ in Ago nanoparticles.


2019 ◽  
Vol 19 (11) ◽  
pp. 7487-7492 ◽  
Author(s):  
Supriya ◽  
Jayanta Kumar Basu ◽  
Sonali Sengupta

Synthesis of silver nanoparticles embedded on calcium alginate film and the catalytic property of this film in the reduction of nitrobenzene with sodium borohydride are demonstrated in this work. Natural polymer alginate acts as effective reducing and stabilizing agent in synthesis of silver nanoparticles. Effect of different parameters on the preparation of silver nanoparticles, such as, temperature, concentration of silver precursor and heating time was investigated. As-prepared silver nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, UV-Vis spectrometry, and atomic absorption spectrometry. Transmission electron microscopy analysis con-firms the formation of silver nanoparticles with particles size range of 3–19 nm and average particle size was found to be 10±4 nm. Effect of concentration of nitrobenzene and sodium borohydride, catalyst loading and temperature on the catalytic reduction of nitrobenzene was studied. Reusability of catalyst was examined in this reduction reaction and the catalyst shows good activity up to 10th run.


Sign in / Sign up

Export Citation Format

Share Document