Model and Simulation of Slurry Velocity and Hydrodynamic Pressure in Abrasive Jet Finishing with Grinding Wheel as Restraint

2008 ◽  
Vol 375-376 ◽  
pp. 449-453 ◽  
Author(s):  
Chang He Li ◽  
Ya Li Hou ◽  
Shi Chao Xiu ◽  
Guang Qi Cai

The models for three-dimensional velocity and hydrodynamic pressure of abrasive fluid in contact zone between wheel and workpiece on abrasive jet finishing with wheel as restraint were presented based on Navier-Stokes equation and continuous formulae. The emulational results shown that the hydrodynamic pressure was proportion to grinding wheel velocity, and inverse proportion to the minimum gap between wheel and workpiece and the maximum pressure was generated just in the minimum clearance region in which higher fluid pressure gradient occur. It can also be concluded the pressure distribution was uniform in the direction of width of wheel except at the edge of wheel because of the side-leakage. The velocity in the x direction was dominant and the side-leakage in the y direction existed. The velocity in the z direction was smaller than the others because of the assumption of laminar flow. The smaller the gap distance is, the larger the velocity in the x direction. The magnitude of the velocity is also proportional to the surface velocity of the wheel.

2010 ◽  
Vol 118-120 ◽  
pp. 655-659
Author(s):  
Chang He Li ◽  
Yan Zhou ◽  
Guang Qi Cai

The theoretical hydrodynamic pressure modeling were presented for flow of coolant fluid through the grinding zone in flood delivery grinding using roughness surface grinding wheel. The simulation results show that the hydrodynamic pressure was proportion to grinding wheel velocity, and inverse proportion to the minimum gap between wheel and work surface and the maximum pressure value was generated just in the minimum gap region in which higher fluid pressure gradient occuring. It can also be concluded the surface roughness of grinding wheel and workpiece makes the contact zone’s hydrodynamic pressure rough and unstable, i.e. the value curve considering roughness is not smooth, leading to the micro-elastohydrodynamic lubrication phenomenon.


2010 ◽  
Vol 135 ◽  
pp. 429-434
Author(s):  
Chang He Li ◽  
Li Li Wang ◽  
Guo Yu Liu

Conventional method of flood delivering coolant fluid by a nozzle in order to achieve high process performance. However, hydrodynamic fluid pressure can be generated ahead of the contact zone due to the wedge effect between wheel peripheral surface and work surface. In the paper, theoretical hydrodynamic pressure modeling were presented for flow of coolant fluid through the grinding zone in flood delivery grinding using smooth and roughness surface grinding wheel respectively. The simulation results show that the hydrodynamic pressure was proportion to grinding wheel velocity, and inverse proportion to the minimum gap between wheel and work surface and the maximum pressure value was generated just in the minimum gap region in which higher fluid pressure gradient occuring. It can also be concluded the surface roughness of grinding wheel and workpiece makes the contact zone’s hydrodynamic pressure rough and unstable, i.e. the value curve considering roughness is not smooth, leading to the micro-elastohydrodynamic lubrication phenomenon.


2010 ◽  
Vol 44-47 ◽  
pp. 970-974
Author(s):  
Chang He Li ◽  
Jing Yao Li ◽  
Ya Li Hou

In the grinding process, conventional method of flood delivering coolant fluid by a nozzle in order to achieve good surface integrity. However, hydrodynamic fluid pressure can be generated ahead of the contact zone due to the wedge effect between wheel peripheral surface and work surface. In the paper, a theoretical hydrodynamic pressure modeling is presented for flow of coolant fluid through the grinding zone in flood delivery grinding. Moreover, coolant induced force can be calculated by integrate the hydrodynamic pressure distribution over the whole contact length. The theoretical results show that the hydrodynamic pressure was proportion to grinding wheel velocity, and inverse proportion to the minimum gap between wheel and work surface and the maximum pressure value was generated just in the minimum gap region in which higher fluid pressure gradient occuring. It can also be concluded the pressure distribution was uniform in the direction of width of wheel except at the edge of wheel because of the side-leakage.


2010 ◽  
Vol 426-427 ◽  
pp. 668-673
Author(s):  
Ya Li Hou ◽  
Chang He Li

In the grinding process, grinding fluid is delivered for the purposes of chip flushing, cooling, lubrication and chemical protection of work surface. Lubrication and cooling are the most important roles provided by a grinding fluid. Hence, the conventional method of flood delivering coolant fluid by a nozzle in order to achieve high process performance purposivelly. However, hydrodynamic fluid pressure can be generated ahead of the grinding zone due to the wedge effect between wheel peripheral surface and part surface. In the paper, a theoretical hydrodynamic pressure modeling is presented for flow of coolant fluid through the grinding zone in flood delivery mode in the surface grinding using resin-bonded diamond grinding wheel, which based on Navier-Stokes equation and continuous formulae. The numerical simulation results showed that the hydrodynamic pressure was proportion to grinding wheel velocity, and inverse proportion to the minimum gap between wheel and workpiece and the maximum pressure was generated just in the minimum clearance region in which higher fluid pressure gradient occur. It can also be concluded the pressure distribution was uniform in the direction of width of wheel except at the edge of wheel because of the side-leakage.


2010 ◽  
Vol 37-38 ◽  
pp. 593-598 ◽  
Author(s):  
Chang He Li ◽  
Zhen Lu Han ◽  
Jing Yao Li

In the grinding process, grinding fluid is delivered for the purposes of chip flushing, cooling, lubrication and chemical protection of work surface. Hence, the conventional method of flood delivering coolant fluid by a nozzle in order to achieve high process performance purposivelly. However, hydrodynamic fluid pressure can be generated ahead of the grinding zone due to the wedge effect between wheel peripheral surface and part surface. In this paper, a theoretical fluid velocity field modeling is presented for flow of coolant fluid of wedge-shaped gap in flood delivery surface grinding, which is based on navier-stokes equation and continuous formulae. The numerical simulation results showed that the velocity in the x direction was dominant and the side-leakage in the y direction existed. The velocity in the z direction was smaller than the others because of the assumption of laminar flow. The smaller the gap is, the larger the velocity in the x direction. The magnitude of the velocity is also proportional to the surface velocity of the wheel.


2010 ◽  
Vol 97-101 ◽  
pp. 1836-1840
Author(s):  
Ya Li Hou ◽  
Fu Xin Yao ◽  
Chang He Li ◽  
Yu Cheng Ding

In the grinding process, conventional method of flood delivering coolant fluid by a nozzle in order to achieve high performance finishing. However, hydrodynamic fluid pressure can be generated ahead of the contact zone due to the wedge effect between wheel peripheral surface and work surface. In the paper, a theoretical hydrodynamic pressure modeling is presented for flow of coolant fluid through the grinding zone in flood delivery grinding. Moreover, coolant induced force can be calculated by integrate the hydrodynamic pressure distribution over the whole contact length. The theoretical results show that the hydrodynamic pressure was proportion to grinding wheel velocity, and inverse proportion to the minimum gap between wheel and work surface and the maximum pressure value was generated just in the minimum gap region in which higher fluid pressure gradient occuring. It can also be concluded the pressure distribution was uniform in the direction of width of wheel except at the edge of wheel because of the side-leakage. Furthermore, the hydrodynamic pressure and coolant induced force at wedge-like zone were also investigated experimentally. The experimental results show the theoretical model is agreement with experimental results and the model can well forecast hydrodynamic pressure distribution at contact zone between grinding wheel and workpiece.


1981 ◽  
Vol 103 (4) ◽  
pp. 785-790 ◽  
Author(s):  
J. H. Masliyah ◽  
K. Nandakumar

The Navier-Stokes equation in a rotating frame of reference is solved numerically to obtain the flow field for a steady, fully developed laminar flow of a Newtonian fluid in a twisted tube having a square cross-section. The macroscopic force and energy balance equations and the viscous dissipation term are presented in terms of variables in a rotating reference frame. The computed values of friction factor are presented for dimensionless twist ratios, (i.e., length of tube over a rotation of π radians normalized with respect to half the width of tube) of 20, 10, 5 and 2.5 and for Reynolds numbers up to 2000. The qualitative nature of the axial velocity profile was observed to be unaffected by the swirling motion. The secondary motion was found to be most important near the wall.


2011 ◽  
Vol 685 ◽  
pp. 461-494 ◽  
Author(s):  
Alain Merlen ◽  
Christophe Frankiewicz

AbstractThe flow around a cylinder rolling or sliding on a wall was investigated analytically and numerically for small Reynolds numbers, where the flow is known to be two-dimensional and steady. Both prograde and retrograde rotation were analytically solved, in the Stokes regime, giving the values of forces and torque and a complete description of the flow. However, solving Navier–Stokes equation, a rotation of the cylinder near the wall necessarily induces a cavitation bubble in the nip if the fluid is a liquid, or compressible effects, if it is a gas. Therefore, an infinite lift force is generated, disconnecting the cylinder from the wall. The flow inside this interstice was then solved under the lubrication assumptions and fully described for a completely flooded interstice. Numerical results extend the analysis to higher Reynolds number. Finally, the effect of the upstream pressure on the onset of cavitation is studied, giving the initial location of the phenomenon and the relation between the upstream pressure and the flow rate in the interstice. It is shown that the flow in the interstice must become three-dimensional when cavitation takes place.


2005 ◽  
Vol 19 (28n29) ◽  
pp. 1539-1542
Author(s):  
ZHANG LI ◽  
DENGBIN TANG ◽  
LINLIN GUO

The generation and the development of turbulent coherent structures in channel flows are investigated by using numerical simulation of Navier-Stokes equation and the theoretic model of turbulent coherent structures built up by the flow stability theories. The three-dimensional coupling compact difference scheme with high accuracy and resolution developed can be applied to the calculative region including points near the boundary. The results computed show nonlinear evolution process and characteristics of Reynolds stress, stream-wise vortices and span-wise vorticities, especially the nonlinear interactions between different coherent structures.


Sign in / Sign up

Export Citation Format

Share Document