Theoretical Model of Surface Roughness for Polishing Super Hard Materials with Abrasive Waterjet

2008 ◽  
Vol 375-376 ◽  
pp. 465-469 ◽  
Author(s):  
Cui Lian Che ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Hong Tao Zhu ◽  
Quan Lai Li

In this paper, the impact pressure of abrasives acting on the polished materials was deduced by Field Theory and the model of surface roughness for polishing super hard materials with Abrasive Water Jet (AWJ) was established. The model indicates that the surface roughness increases linearly with an increase in the maximum depth of abrasives indenting into materials and that the relationship between the surface roughness and polishing parameters including water pressure, abrasive pressure, the impact angle, the hardness of the polished material, the elastic distortion of abrasive, abrasive size, abrasive density, nozzle diameter and standoff.

2014 ◽  
Vol 1029 ◽  
pp. 176-181 ◽  
Author(s):  
Ion Aurel Perianu ◽  
Ion Mitelea ◽  
Viorel Aurel Şerban

In this paper research elements regarding the effect of water pressure variation on cut surfaces quality are presented in the field of abrasive water jet cutting of materials hard to process by machining such as austenitic stainless steels, in this case with a thickness of 20 mm. Selection of the optimal cutting process based on technical and economic criteria takes into consideration the type and thickness of the targeted material and also the physical and geometrical quality requirements. The present paper contains experimental research results regarding abrasive water jet cutting of austenitic stainless steel EN 1.4306 (ASTM 304 L) at different values of water pressure. The abrasive material used is Garnet with particle granulation 80 Mesh. By making roughness measurements and hardness examinations of the cut surface an evaluation will be made of the surface quality defining the optimal pressure values.


Author(s):  
Barath M ◽  
◽  
Rajesh S ◽  
Duraimurugan P ◽  
◽  
...  

The abrasive mixed waterjet was with success utilized to chop several materials together with steel, metal and glass for a spread of business applications. This work focuses on surface roughness of hybrid metal matrix composite (AA6061, Al2O3, B4C). Machining was applied by AWJM (Abrasive Waterjet Cutting) at completely different parameters Water pressure, Traverse speed, Abrasive flow and stand-off distance. The reinforced composite was analyzed exploitation FE SEM (Field Emission Scanning lepton Microscope) and distribution of reinforced was studied by AFM (Atomic Force Microscopy). For optimum results surface roughness was calculated.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950112 ◽  
Author(s):  
A. SHANMUGAM ◽  
K. KRISHNAMURTHY ◽  
T. MOHANRAJ

Surface roughness and taper angle of an abrasive waterjet machined surface of 7075 Aluminum metal matrix composite were deliberately studied. Response surface methodology design of experiments and analysis of variance were used to design the experiments and to identify the effect of process parameters on surface roughness and taper angle. The jet traverse speed and jet pressure were the most significant process parameters which influence the surface roughness and taper angle, respectively. Increasing the pressure and jet traverse speed results in increasing the surface roughness and taper angle. At the same time, decreasing the standoff distance and jet traverse speed possibly enhances both the responses. The optimal process parameters of 1[Formula: see text]mm as standoff distance, 192[Formula: see text]MPa as water pressure and 30[Formula: see text]mm[Formula: see text]min[Formula: see text] as jet traverse speed were identified to obtain the minimum value of surface roughness and taper angle. Based on the optimal parameters, the confirmation test was conducted. The mathematical equation was obtained from the experimental data using regression analysis; it was observed that the error was less than 5% of the experimentally measured values.


2019 ◽  
Vol 813 ◽  
pp. 129-134 ◽  
Author(s):  
Andrea El Hassanin ◽  
Maurizio Troiano ◽  
Alessia Teresa Silvestri ◽  
Vincenzo Contaldi ◽  
Fabio Scherillo ◽  
...  

Metal Additive Manufacturing technologies development is increasing in a remarkable way due to their great potential concerning the production of complex parts with tailored characteristics in terms of design, material properties, usage and applications. Among all, the most widespread technologies are the Powder Bed Fusion based technologies such as Selective Laser Melting and Electron Beam Melting. However, the high surface roughness of the as-built parts still represents one of the major limitations, making necessary the adoption of post-process finishing to match the technological requirements for most of the fields of application. In this scenario, Fluidised Bed Machining represents an emerging finishing technology that could overcome some of the limitations of the most common methods, especially in terms of feasibility for the treatment of complex parts thanks to the fluid-like mobility of the abrasive material. This work deals with the preliminary tests of the Fluidised Bed Machining of additive manufactured samples using alumina as the abrasive material, investigating the effects of a high abrasive/substrate hardness ratio condition. The experiments were carried out on small plates of AlSi10Mg alloy made through Selective Laser Melting technology, built in the vertical direction with respect to the building plate. The influence of the impact angle and treatment time were investigated under bubbling fluidization conditions. Surface morphology evaluations were carried out pre and post process by means of Confocal Microscopy and Scanning Electron Microscopy (SEM). Weight loss measurements were conducted to evaluate the material removal rates as well. Results show a small influence of the specific impact angle, a slight reduction of the surface roughness and an asymmetrical effect of treatment, acting mostly on the sintered powders forming the peaks of the as-built surface.


Author(s):  
Naresh Babu Munuswamy ◽  
M. Nambi Krishnan

This study investigates optimal parameter setting in abrasive waterjet machining (AWJM) on aluminium alloy AA 6351, using taguchi based Grey Relational Analysis (GRA) is been reported. The water pressure, traverse speed and stand-off-distance were chosen as the process parameters in this study. An L9 orthogonal matrix array is used for the experimental plan. The performance characteristics which include surface roughness (Ra) and kerf angle (KA) are considered. The results indicate that surface roughness and kerf angle decreases, with increase in water pressure and decrease in traverse speed. Analysis of variance (ANOVA) illustrates that traverse speed is the major parameter (89.7%) for reducing surface roughness and kerf angle, followed by water pressure (5.85%) and standoff distance (2%) respectively. The confirmation results reveal that surface roughness reduced by 16% and kerf angle reduced by 47%. Furthermore, the surfaces were examined under scanning electron microscope (SEM) and atomic force microscope (AFM) for a detailed study


2014 ◽  
Vol 1017 ◽  
pp. 228-233 ◽  
Author(s):  
Yong Wang ◽  
Hong Tao Zhu ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Peng Yao ◽  
...  

Abrasive water jet machining is considered as a promising technique in hard and brittle material processing. This paper studies the erosion performance of the alumina ceramics in the different process parameters. In the erosion experiments, alumina ceramics wafers were eroded by the abrasive waterjet machining. The single factor experiments were carried out to understand the effect of different process parameters (jet impact angle, standoff distance, water pressure, abrasive particle diameter) on the material removal rate (MRR), the removal depth and surface roughness (Ra). The experimental results can provide guidance for alumina ceramics abrasive water jet cutting and polishing.


The main aim of this investigation is to study the surface roughness produced on abrasive water jet machining of the twill weaved carbon fibre reinforced epoxy composite. Abrasive water jet machining experiment was conducted as per L9 orthogonal array, by varying water pressure, transverse speed and SOD. The performance of the composite was analysed by measuring the surface roughness. Using Taguchi analysis, the influences of input parameter over the output response was analysed. It was found that the surface roughness is highly influenced by the transverse speed.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 997
Author(s):  
Xiaoyuan Li ◽  
Qikai Li ◽  
Zuoyan Ye ◽  
Yunfei Zhang ◽  
Minheng Ye ◽  
...  

Although magnetorheological finishing (MRF) is being widely utilized to achieve ultra-smooth optical surfaces, the mechanisms for obtaining such extremely low roughness after the MRF process are not fully understood, especially the impact of finishing stresses. Herein we carefully investigated the relationship between the stresses and surface roughness. Normal stress shows stronger impacts on the surface roughness of fused silica (FS) when compared with the shear stress. In addition, normal stress in the polishing zone was found to be sensitive to the immersion depth of the magnetorheological (MR) fluid. Based on the above, a fine tuning of surface roughness (RMS: 0.22 nm) was obtained. This work fills gaps in understanding about the stresses that influence surface roughness during MRF.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4424 ◽  
Author(s):  
Irena M. Hlaváčová ◽  
Marek Sadílek ◽  
Petra Váňová ◽  
Štefan Szumilo ◽  
Martin Tyč

Although the abrasive waterjet (AWJ) has been widely used for steel cutting for decades and there are hundreds of research papers or even books dealing with this technology, relatively little is known about the relation between the steel microstructure and the AWJ cutting efficiency. The steel microstructure can be significantly affected by heat treatment. Three different steel grades, carbon steel C45, micro-alloyed steel 37MnSi5 and low-alloy steel 30CrV9, were subjected to four different types of heat treatment: normalization annealing, soft annealing, quenching and quenching followed by tempering. Then, they were cut by an abrasive water jet, while identical cutting parameters were applied. The relations between the mechanical characteristics of heat-treated steels and the surface roughness parameters Ra, Rz and RSm were studied. A comparison of changes in the surface roughness parameters and Young modulus variation led to the conclusion that the modulus was not significantly responsible for the surface roughness. The changes of RSm did not prove any correlation to either the mechanical characteristics or the visible microstructure dimensions. The homogeneity of the steel microstructure appeared to be the most important factor for the cutting quality; the higher the difference in the hardness of the structural components in the inhomogeneous microstructure was, the higher were the roughness values. A more complex measurement and critical evaluation of the declination angle measurement compared to the surface roughness measurement are planned in future research.


2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Puneet Kumar ◽  
Bhavik Tank ◽  
Ravi Kant

Abrasive water jet machining (AWJM) is one of the most developed non-traditional machining processes. It is generally used to cut difficult to cut materials like composites. The present study is focused on machining of carbon fiber vinyl ester composite with AWJM. The effect of process parameters namely water pressure, standoff distance and traverse speed on surface roughness and kerf tapper is studied. Design of experiment is done by using Taguchi L16 orthogonal array. It is observed that water pressure is the most significant parameter followed by traverse speed. It is found that with the increase in water pressure and decrease in traverse speed of AWJM, surface roughness and kerf tapper of machined samples decreases.


Sign in / Sign up

Export Citation Format

Share Document