scholarly journals Influence of Steel Structure on Machinability by Abrasive Water Jet

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4424 ◽  
Author(s):  
Irena M. Hlaváčová ◽  
Marek Sadílek ◽  
Petra Váňová ◽  
Štefan Szumilo ◽  
Martin Tyč

Although the abrasive waterjet (AWJ) has been widely used for steel cutting for decades and there are hundreds of research papers or even books dealing with this technology, relatively little is known about the relation between the steel microstructure and the AWJ cutting efficiency. The steel microstructure can be significantly affected by heat treatment. Three different steel grades, carbon steel C45, micro-alloyed steel 37MnSi5 and low-alloy steel 30CrV9, were subjected to four different types of heat treatment: normalization annealing, soft annealing, quenching and quenching followed by tempering. Then, they were cut by an abrasive water jet, while identical cutting parameters were applied. The relations between the mechanical characteristics of heat-treated steels and the surface roughness parameters Ra, Rz and RSm were studied. A comparison of changes in the surface roughness parameters and Young modulus variation led to the conclusion that the modulus was not significantly responsible for the surface roughness. The changes of RSm did not prove any correlation to either the mechanical characteristics or the visible microstructure dimensions. The homogeneity of the steel microstructure appeared to be the most important factor for the cutting quality; the higher the difference in the hardness of the structural components in the inhomogeneous microstructure was, the higher were the roughness values. A more complex measurement and critical evaluation of the declination angle measurement compared to the surface roughness measurement are planned in future research.

2015 ◽  
Vol 22 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Pavol Hreha ◽  
Agata Radvanska ◽  
Lucia Knapcikova ◽  
Grzegorz M. Królczyk ◽  
Stanisław Legutko ◽  
...  

Abstract The paper deals with a study of relations between the measured Ra, Rq, Rz surface roughness parameters, the traverse speed of cutting head v and the vibration parameters, PtP, RMS, vRa, generated during abrasive water jet cutting of the AISI 309 stainless steel. Equations for prediction of the surface roughness parameters were derived according to the vibration parameter and the traverse speed of cutting head. Accuracy of the equations is described according to the Euclidean distances. The results are suitable for an on-line control model simulating abrasive water jet cutting and machining using an accompanying physical phenomenon for the process control which eliminates intervention of the operator.


Author(s):  
J. Valentinčič ◽  
A. Lebar ◽  
I. Sabotin ◽  
P. Drešar ◽  
M. Jerman

Purpose: Abrasive water jet (AWJ) cutting uses mineral abrasive to cut practically all materials. In ice abrasive water jet (IAWJ) cutting, the ice particles are used as abrasive. IAWJ is under development with the aim to bridge the gap in productivity between the abrasive water jet (AWJ) and water jet (WJ) cutting. It is clean and environmentally friendlier in comparison with AWJ, while its cutting efficiency could be better than WJ. Design/methodology/approach: The main challenge is to provide very cold and thus hard ice particles in the cutting zone, thus cooling the water under high pressure is utilized. Further on, two approaches to obtain ice particles in the water are studied, namely generation of ice particles in the cutting head and generation of ice particles outside of the cutting head and adding them to the jet similar as in AWJ technology. In this process it is essential to monitor and control the temperature occurring in the system. Findings: To have ice particles with suitable mechanical properties in the cutting process, the water have to be precooled, ice particles generated outside the cutting head and later added to the jet. The results show that, contrary to the common believe, the water temperature is not significantly changed when passing through the water nozzle. Research limitations/implications: The presence of ice particles was only indirectly identified. In the future, a special high speed camera will be used to study the influence of process parameters on ice particle distribution. Practical implications: IAWJ technology produces much less sludge (waste abrasive and removed workpiece material mixed with water) than AWJ technology which is beneficial in e.g. disintegration of nuclear power plants. IAWJ technology has also great potential in the food and medical industries for applications, where bacteria growth is not desired. Originality/value: The paper presents the latest achievements of IAWJ technology.


2012 ◽  
Vol 723 ◽  
pp. 188-195 ◽  
Author(s):  
Tian Xiang Chen ◽  
Cheng Yong Wang

Abrasive water jet was utilized to polish the 40CrMnMo7 mold steel and BK7 glass in this experiment designed by Taguchi method. The influence of polishing parameters on the polishing quality, their significance order, and the optimum polishing parameters were analyzed and reported. With the experimental data, the mathematic molds of surface roughness of polished workpieces were created by dimensional analysis, and then they were validated by the test experiment.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3122 ◽  
Author(s):  
Monika Kulisz ◽  
Ireneusz Zagórski ◽  
Jarosław Korpysa

This paper analyses the effect of the abrasive waterjet cutting parameters’ modification on the condition of the workpiece surface layer. The post-machined surface of casting aluminium alloys, AlSi10Mg and AlSi21CuNi, was characterised in terms of surface roughness and irregularities, chamfering, and microhardness in order to reveal the effect that variable jet feed rate, abrasive flow rate, and sample height (thickness of the cut material) have on the quality of surface finish. From the analysis of the results, it emerges that the surface roughness remains largely unaffected by changes in the sample height h or the abrasive flow rate ma, whereas it is highly susceptible to the increase in the jet feed rate vf. It has been shown that, in principle, the machining does not produce the strengthening effect, that is, an increase in microhardness. Owing to the irregularities that are typically found on the workpieces cut with higher jet feed rates vf, additional surface finish operations may prove necessary. In addition, chamfering was found to occur throughout the entire range of speeds vf. The statistical significance of individual variables on the 2D surface roughness parameters, Ra/Rz/RSm, was determined using factorial analysis of variance (ANOVA). The results were verified by means of artificial neural network (ANN) modelling (radial basis function and multi-layered perceptron), which was employed to predict the surface roughness parameters under consideration. The obtained correlation coefficients show that ANNs exhibit satisfying predictive capacity, and are thus a suitable tool for the prediction of surface roughness parameters in abrasive waterjet (AWJ) technology.


2018 ◽  
Vol 919 ◽  
pp. 92-100
Author(s):  
Peter Košťál ◽  
Jana Moravčíková ◽  
Daynier Rolando Delgado Sobrino ◽  
Radovan Holubek

In order to increase the cutting and breaking capacity of abrasive water jet machining (AWJM), abrasive particles are usually added to water. The AWJM technology is generally used for harder and heavier machinable materials like thick sheets, composite materials with metal and ceramic properties and others within these categories to just cite a few. The contribution is mainly focused on the analysis of the surface properties of the steel S235 after the cutting process, and this depending on the cutting speed of the water jet. Three different cutting speeds were used for the analysis because this cutting parameter significantly affects the resulting quality of the machined surface. A contact profile method was used to analyze surface roughness. The observed surface roughness parameters were the Ra, Rt and Rz respectively. The above-mentioned surface roughness parameters were measured in three positions, i.e.: at the inlet, middle and exit positions of the water jet with respect to the machined material.


2015 ◽  
Vol 1111 ◽  
pp. 85-90 ◽  
Author(s):  
Cristian Ghera ◽  
Ion Mitelea ◽  
Ilare Bordeaşu ◽  
Corneliu Marius Crăciunescu

This paper analyzes, by comparison, the changes appeared in surface topography, for 16MnCr5 steel tested at cavitation erosion, subjected to different type of the heat treatments. The purpose of research, aimed at establishing a correlation between resistance to cavitation erosions and the surface roughness parameters, for various types of heat treatment (annealing, carburizing, Duplex treatment of carburizing, followed by the surface hardening by induction). Cavitation tests were conducted on a vibrator device with piezoceramic crystals, which fully complies with the requirements imposed by the ASTM G32 - 2010. Roughness parameters were measured using a Mitutoyo apparatus.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2111 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Mariusz Kłonica ◽  
Monika Kulisz ◽  
Katarzyna Łoza

This paper investigates the effect of change of the abrasive flow rate and the jet feed on the effectiveness of machining of AZ91D casting magnesium alloy. The evaluation of the state of the workpiece surface was based on surface and area roughness parameters (2D and 3D), which provided data on: irregularities formed on the workpiece edge surface (water jet exit), the surface quality after cutting, the workpiece surface chamfering, microhardness of the machined surface, and of specimen cross-sections (along the water jet impact). The process was tested for two parameter settings: abrasive flow rate 50 at cutting speed vf = 5–140 mm/min, and abrasive flow rate 100% (0.5 kg/min) at vf = 5–180 mm/min. The results demonstrate a significant effect of the abrasive flow rate and the jet feed velocity on the quality of machined surface (surface roughness and irregularities). In addition, selected 2D surface roughness parameters were modelled using artificial neural networks (radial basis function and multi-layered perceptron). It has been shown that neural networks are a suitable tool for prediction of surface roughness parameters in abrasive water jet machining (AWJM).


2019 ◽  
Vol 9 (10) ◽  
pp. 2134
Author(s):  
Gerhard Mitaľ ◽  
Jozef Dobránsky ◽  
Juraj Ružbarský ◽  
Štefánia Olejárová

The paper is an evaluation of the surface roughness of various materials produced by water jet cutting (AWJ, abrasive water jet). A 3D laser profilometer developed at the Department of Design and Technical Systems Monitoring at our University was used in roughness measurement. To verify the values measured by the laser profilometer, another measurement was performed using a 2D contact roughness meter. The tests were done on aluminum and stainless-steel materials, respectively. Six samples were produced; three made of stainless steel and three made of aluminum. All samples were produced at a different feed rate of the cutting head. This was adapted to the different roughness required, per the manufacturer’s material data sheets. Varying rates of separation translated into different qualities of the surfaces under evaluation. The evaluated roughness parameters were Ra and Rz. Dependencies were plotted in the chart based on the values measured, which were then compared and evaluated.


Sign in / Sign up

Export Citation Format

Share Document