Application of Wavelet Analysis in the Virtual Measurement of Roundness/Cylindricalness for Shaft-Like Components

2008 ◽  
Vol 392-394 ◽  
pp. 69-73
Author(s):  
Li Zhi Gu ◽  
Chun Jiang Xiang

Wavelet analysis was applied to detect the greatest deviation from the perfect circle for the roundness and cylindricalness of shaft-like components in the virtual manufacturing engineering. Based on the concepts of the roundness and cylindricalness, the least square method was adopted into the determination of the reference—the least square circle from which the deviation was calculated. In order to obtain the extremum of the errors, wavelet transform was carried out with binary wavelet from the time domain to frequency domain. A virtual probe was used to have the signals for the measured point by using WTnode_gettranslation() function. The accuracy of the measurement depends, to a large extent, on the length of individual step along the axis and the density of the measured points on the sections. Experiments have shown that the measuring processing was time-saving and the results from the wavelet analysis were much reliable.

Author(s):  
Kimihio Yasuda ◽  
Keisuke Kamiya

Abstract In previous papers the authors proposed a new experimental identification technique applicable to elastic structures. The proposed technique is based on the principle of harmonic balance, and can be classified as the frequency domain technique. The technique requires the excitation force to be periodic. This is in some cases a restriction. So another technique free from this restriction is of use. In this paper, as a first step for developing such techniques, a technique applicable to beams is proposed. The proposed technique can be classified as the time domain one. Two variations of the technique are proposed, depending on what methods are used for estimating the parameters of the governing equations. The first method is based on the usual least square method. The second is based on solving a minimization problem with constraints. The latter usually yields better results. But in this method, an iteration procedure is used, which requires initial values for the parameters. To determine the initial values, the first method can be used. So both methods are useful. Finally the applicability of the proposed technique is confirmed by numerical simulation and experiments.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1240
Author(s):  
Fuyao Yan ◽  
Yiheng Wang ◽  
Ying Yang ◽  
Lei Zhu ◽  
Hui Hu ◽  
...  

Surface exchange coefficient (k) and bulk diffusion coefficient (D) are important properties to evaluate the performance of mixed ionic-electronic conducting (MIEC) ceramic oxides for use in energy conversion devices, such as solid oxide fuel cells. The values of k and D are usually estimated by a non-linear curve fitting procedure based on electrical conductivity relaxation (ECR) measurement. However, the rate-limiting mechanism (or the availability of k and D) and the experimental imperfections (such as flush delay for gaseous composition change, τf) are not reflected explicitly in the time–domain ECR data, and the accuracy of k and D demands a careful sensitivity analysis of the fitting error. Here, the distribution of characteristic times (DCT) converted from time–domain ECR data is proposed to overcome the above challenges. It is demonstrated that, from the DCT spectrum, the rate-limiting mechanism and the effect of τf are easily recognized, and the values of k, D and τf can be determined conjunctly. A strong robustness of determination of k and D is verified using noise-containing ECR data. The DCT spectrum opens up a way towards visible and credible determination of kinetic parameters of MIEC ceramic oxides.


2020 ◽  
pp. 147592172095709
Author(s):  
Nitin Burud ◽  
JM Chandra Kishen

This work dives into the spectral realm of acoustic emission waveforms. The acoustic emission waveforms carry a footprint of source, its mechanism, and the information of the medium through which it travels. The idiosyncrasies of these waveforms cannot be visualized from the time-domain parameters. The complex fracture process of the heterogeneous composite, such as concrete, reflects in the spectral disorder of acoustic emission signals. The use of wavelet entropy is proposed to estimate the spectral disorder. To evaluate wavelet entropy, the relative energy distribution in frequency sub-bands is determined using the wavelet transform. The Shannon entropy formulation as a wavelet entropy is utilized for discriminating spatiotemporally distributed acoustic emission events according to their respective level of disorder. The possible twofold application of the wavelet entropy as a signal discriminator and a damage index is qualitatively demonstrated. The increase in the statistical variance of wavelet entropy distribution with the increase in stress level reveals the presence of multi-sources as well as multi-mechanistic fracture process.


1988 ◽  
Vol 32 ◽  
pp. 365-375 ◽  
Author(s):  
Katsumi Ohno ◽  
Hirosi Harada ◽  
Toshihiro Yamagata ◽  
Michio Yamazaki ◽  
Kazumasa Ohsumi

AbstractThe lattice misfits between γ and γ' phases in Ni-base superalloys (single crystal) were accurately determined for filings of specimens by using both a conventional X-ray tube focusing diffractometer(CXRFD) and a synchrotron-radiation parallel beam X-ray diffractometer (SRPXRD). All reflection peaks measured with the CXRFD were in a cluster of overlapping peaks because of the very small differences in the lattice parameters of both phases and the instrumental broadening due to X-ray optics including the spectral distribution of Xray source such as CuKα doublet. The deconvolution method was applied to remove the instrumental broadening from the peaks measured with the CXRFD. The window functions for the deconvolution method were calculated from CuKα doublet reflection of Si standard by a nonlinear least-square method.The instrumental broadening of SRPXRD was much smaller than that of CXRFD since the monochromatic X-rays produced single peak profiles and constant profile shape over a wide 2θ range. A profile fitting with a pseudo-Voigt function was used to determine 2θ angles to 0.0005 deg. for the synchrotron powder data. The peak angle and shape reflected from γ' phases in γ-matrix and those fron electrochemically extracted γ'-phase were significantly different.


Author(s):  
Hua Yi ◽  
Peichang Ouyang ◽  
Tao Yu ◽  
Tao Zhang

Continuous wavelet transform (CWT) is a linear convolution of signal and wavelet function for a fixed scale. This paper studies the algorithm of CWT with Morlet wavelet as mother wavelet by using nonzero-padded linear convolution. The time domain filter, which is a non-causal filter, is the sample of wavelet function. By making generalized discrete Fourier transform (GDFT) and inverse transform for this filter, we can get a geometrically weighted periodic extension of the filter when evaluated outside its original support. From this extension of the time domain filter, we can get a causal filter. In this paper, GDFT-based algorithm for CWT, which has a more concise form than that of linear convolution proposed by Jorge Martinez, is constructed by using this causal filter. The analytic expression of the GDFT of this filter, which is essential for GDFT-based algorithm for CWT, is deduced in this paper. The numerical experiments show that the calculation results of GDFT-based algorithm are stable and reliable; the running speed of GDFT-based algorithm is faster than that of the other two algorithms studied in our previous work.


Sign in / Sign up

Export Citation Format

Share Document