Computer-Aided Simulation of Metal Flow through Curved Die for Extrusion of Square Section from Square Billet

2009 ◽  
Vol 424 ◽  
pp. 181-188 ◽  
Author(s):  
Kali Pada Maity ◽  
Akshaya Kumar Rout ◽  
Kalu Majhi

Extrusion through mathematically contoured die plays a critical role in improvement of surface integrity of extruded product. There is gradual deformation which results in the uniform microstructure. In the present investigation non-dimensional extrusion pressure and optimum die length for cosine die profile has been obtained by three dimensional upper bound method using dual stream function method for different reductions. The theoretical modeling has been validated with experiments. The experimental results are found to be compatible with the theory.

2012 ◽  
Vol 500 ◽  
pp. 410-413
Author(s):  
Akshaya Kumar Rout ◽  
Kali Pada Maity

The linearly converging die plays a significant role in the extrusion process of section products in terms of reduction in extrusion load and improvement of product quality. With the help of upper bound method based on dual stream function method. Very few investigations have been reported when product and billet geometry are dissimilar using linear converging die. Dual stream function method is incapable of predicting kinematically admissible velocity field in the above case, SERR technique (Spatial Elementary Rigid Region) is the only alternative. In the present investigation, a reformulated SERR technique has been used to determine non-dimensional extrusion pressure and optimum die profile both for frictionless and friction conditions. SERR technique based on discontinuous velocity field is applicable for this case. In the present investigation, non-dimensional extrusion pressure and optimum die length has been determined for extrusion of pentagonal from round billet and the results are compared with the FEA results by using DEFORM 3D.


2012 ◽  
Vol 57 (4) ◽  
pp. 1137-1142 ◽  
Author(s):  
J. Bartnicki

This paper presents the results of numerical calculations of rolling extrusion process of a hollow hub. Simulations were made by means of software Deform 3D in three dimensional state of strain. Distributions of effective stress, effective strain and damage criterion in the rolled extruded product were analyzed. Verification of metal flow during process allowed to design tools for experimental verification in PO-2 laboratory rolling - extrusion aggregate. For these needs also process force parameters were calculated.


2011 ◽  
Vol 491 ◽  
pp. 249-256 ◽  
Author(s):  
Akshaya Kumar Rout ◽  
Kali Pada Maity ◽  
Manoja Kumar Parida

Extrusion is one of the widely used metal forming processes. The extrusion process is carried out conventionally using a shear faced die, but shear faced dies have many practical problems such as a dead metal zone, more redundant work. In the present investigation, the evolution of uniform microstructure in extruded product with improved mechanical properties for quality products to get dimensional accuracy. A mathematically contoured non-linear converging die has been designed for extrusion of square section from round billet. CAD models of die profile have also been developed. The experiments have been conducted to verify the proposed theoretical model. The extrusion test rigs have been fabricated to carry out extrusion through mathematically contoured dies.


2010 ◽  
Vol 443 ◽  
pp. 93-97
Author(s):  
Akshaya Kumar Rout ◽  
Kali Pada Maity ◽  
Sushant Kumar Rath

The die profile plays an important role in reduction of extrusion load, evolution of uniform micro-structure and overall improvement of surface integrity of extruded product. In the present investigation, a numerical analysis has been carried out for extrusion through cosine die profile using DEFORM software for plane strain deformation using rigid plastic material. The extrusion load has been predicted. The effective stress, strain, strain rate and velocity distribution have been determined. It is proposed to investigate the evolution of uniform microstructure and the effect of strain hardening in the extrusion process in future work.


2008 ◽  
Vol 367 ◽  
pp. 145-152 ◽  
Author(s):  
Gang Liu ◽  
Jie Zhou ◽  
K. Huang ◽  
Jurek Duczczyk

A detailed analysis of metal flow through a porthole die to produce a rectangular hollow aluminium profile was performed by means of three-dimensional FE simulation using DEFORM 3D. It was aimed at revealing the flow patterns of a medium-strength aluminium alloy 7020 through a porthole die and gaining an insight into the formation of longitudinal weld seams inside the welding chamber during extrusion. In the case of extruding a rectangular hollow profile through a porthole die with four ports, two neighbouring ports were different from each other. Using an FE model including these two ports, different flow patterns of two individual metal streams were revealed. The 3D FE simulation also showed how two unequal metal streams contacted each other and became bonded in the welding chamber under a certain hydrostatic pressure and at a certain temperature, before the metal flew through the die bearing. The difference in velocity between the metal streams led to uneven flow at the die bearing and thus a wavy extrusion nose.


Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Naotaka Kubo

Abstract It is known that matrix models computing the partition functions of three-dimensional $$ \mathcal{N} $$ N = 4 superconformal Chern-Simons theories described by circular quiver diagrams can be written as the partition functions of ideal Fermi gases when all the nodes have equal ranks. We extend this approach to rank deformed theories. The resulting matrix models factorize into factors depending only on the relative ranks in addition to the Fermi gas factors. We find that this factorization plays a critical role in showing the equality of the partition functions of dual theories related by the Hanany-Witten transition. Furthermore, we show that the inverses of the density matrices of the ideal Fermi gases can be simplified and regarded as quantum curves as in the case without rank deformations. We also comment on four nodes theories using our results.


2020 ◽  
Vol 319 ◽  
pp. 02004
Author(s):  
Muhammad Akif Rahman ◽  
Md Badrath Tamam ◽  
Md Sadman Faruque ◽  
A.K.M. Monjur Morshed

In this paper a numerical analysis of three-dimensional laminar flow through rectangular channel heat sinks of different geometric configuration is presented and a comparison of thermal performance among the heat sinks is discussed. Liquid water was used as coolant in the aluminum made heat sink with a glass cover above it. The aspect ratio (section height to width) of rectangular channels of the mini-channel heat sink was 0.33. A heat flux of 20 W/cm2 was continuously applied at the bottom of the channel with different inlet velocity for Reynold’s number ranging from 150 to 1044. Interconnectors and obstacles at different positions and numbers inside the channel were introduced in order to enhance the thermal performance. These modifications cause secondary flow between the parallel channels and the obstacles disrupt the boundary layer formation of the flow inside the channel which leads to the increase in heat transfer rate. Finally, Nusselt number, overall thermal resistance and maximum temperature of the heat sink were calculated to compare the performances of the modified heat sinks with the conventional mini channel heat sink and it was observed that the heat sink with both interconnectors and obstacles enhanced the thermal performance more significantly than other configurations. A maximum of 36% increase in Nusselt number was observed (for Re =1044).


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1043 ◽  
Author(s):  
Amin Razeghiyadaki ◽  
Dichuan Zhang ◽  
Dongming Wei ◽  
Asma Perveen

A coupled surface response optimization method with a three-dimensional finite volume method is adopted in this study to identify five independent geometric variables of the die interior that provides a design with the lowest velocity variance at the exit of the coat-hanger extrusion die. Two of these five geometric variables represent the manifold dimension while the other three variables represent the die profile. In this method, B-spline fitting with four points was used to represent the die profile. A comparison of the optimized die obtained in our study and the die with a geometry derived by a previous theoretical work shows a 20.07% improvement in the velocity distribution at the exit of the die.


Sign in / Sign up

Export Citation Format

Share Document