3D FEM Simulation and Experimental Research of Springback in Bending Process of Aluminum Alloy Sheet

2010 ◽  
Vol 431-432 ◽  
pp. 487-490
Author(s):  
Xia Jin ◽  
Shi Hong Lu

Bending of the aluminum alloy is one of the processes frequently applied during manufacture of aircraft sheet metal. The bending operation involves springback, which is defined as elastic recovery of the part during unloading. In manufacturing industry, it is still a practical and difficult problem to predict the final geometry of the part after springback and to design appropriate tools in order to compensate for springback. In this study, 3D commercially available finite element analysis (FEA) software-MARC is used to analyse bending and springback of different aluminium materials (LY12CZ) with different thickness. The amount of springback, total equivalent plastic strains and equivalent von mises stresses are obtained. Moreover, the relation between bent angle and springback angle, R/t ratio and springback angle are presented and discussed in detail.The comparison results of FEA result and experiment data indicate that the FEM (finite element analysis method) simulation is a power tool for the highly accurate prediction of springback behavior in sheet metal bending.

2021 ◽  
Vol 901 ◽  
pp. 176-181
Author(s):  
Tung Sheng Yang ◽  
Chieh Chang ◽  
Ting Fu Zhang

This paper used finite element analysis of metal forming to study the forging process and die design of aluminum alloy brake parts. According to the process parameters and die design, the brake parts were forged by experiment. First, the die design is based on the product size and considering parting line, draft angle, forging tolerance, shrinkage and scrap. Secondly, the finite element analysis of metal forming is used to simulate the forging process of aluminum alloy brake parts. Finally, the aluminum alloy brake levers with dimensional accuracy and surface hardness were forged.


Author(s):  
Sachin Kumar Nikam ◽  
◽  
Sandeep Jaiswal ◽  

This paper deals with experimental and finite element analysis of the stretch flanging process using AA- 5052 sheets of 0.5 mm thick. A parametrical study has been done through finite element simulation to inspect the influence of procedural parametrical properties on maximum thinning (%) within the stretch flanging process. The influence of preliminary flange length of sheet metal blank, punch die clearance, and width was examined on the maximum thinning (%). An explicit dynamic finite element method was utilized using the finite element commercial package ABAQUS. Strain measurement was done after conducting stretch flanging tests. A Mesh convergence examination was carried out to ascertain the maximum percentage accuracy in FEM model. It is found through finite element simulation that the width of sheet metal blanks has a greater impact on the maximum percentage of thinning as compared to preliminary flange length, and clearance of the punch dies.


2014 ◽  
Vol 970 ◽  
pp. 177-184 ◽  
Author(s):  
Wen Chiet Cheong ◽  
Heng Keong Kam ◽  
Chan Chin Wang ◽  
Ying Pio Lim

A computational technique of rigid-plastic finite element method by using the Eulerian meshing method was developed to deal with large deformation problem in metal forming by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. During metal forming process, a workpiece normally undergoes large deformation and causes severe distortion of elements in finite element analysis. The distorted element may lead to instability in numerical calculation and divergence of non-linear solution in finite element analysis. With Eulerian elements, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. Four types of cold forging and sheet metal clinching were conducted to investigate the effectiveness of the presented method. The proposed method is found to be effective by comparing the results on dimension of the final product, material flow behaviour and punch load versus stroke obtained from simulation and experiment.


2013 ◽  
Vol 815 ◽  
pp. 860-867
Author(s):  
Yu Gu ◽  
Shao Xiong Li ◽  
Rui Li ◽  
Qiang Li

Vibration results from situation when the inherent frequency close to the external exciting force during the operation of the motor, so accurate and effective calculation of the natural frequency of the motor has an important significance to damping noise. By numerical simulation model and the ANSYS finite element modal, the inherent frequencies were got of the motor and comparison results verify the effectiveness of the motor model. The effect of the modulus of elasticity of the softening layer between the motor and the ground to the inherent frequency was researched intensively, and puts forward related suggestions.


2018 ◽  
Vol 53 (8) ◽  
pp. 584-601 ◽  
Author(s):  
Sara S Miranda ◽  
Manuel R Barbosa ◽  
Abel D Santos ◽  
J Bessa Pacheco ◽  
Rui L Amaral

Press brake air bending, a process of obtaining products by sheet metal forming, can be considered at first sight a simple geometric problem. However the accuracy of the obtained geometries involves the combination of multiple parameters directly associated with the tools and the processing parameters, as well as with the sheet metal materials and dimensions. The main topic herein presented deals with the capability of predicting the punch displacement process parameter that enables the product to be accurately shaped to a desired bending angle, in press brake air bending. In our approach, it is considered separately the forming process and the elastic recovery (i.e. the springback effect). Current solutions in press brake numerical control (computer numerical control) are normally configured by analytical models developed from geometrical analysis and including correcting factors. In our approach, it is proposed to combine the use of a learning tool, artificial neural networks, with a simulation and data generation tool (finite element analysis). This combination enables modeling the complex nonlinear behavior of the forming process and springback effect, including the validation of results obtained. A developed model taking into account different process parameters and tool geometries allow extending the range of applications with practical interest in industry. The final solution is compatible with its incorporation in a computer numerical control press brake controller. It was concluded that, using this methodology, it is possible to predict efficient and accurate final geometries after bending, being also a step forward to a “first time right” solution. In addition, the developed models, methodologies and obtained results were validated by comparison with experimental tests.


Sign in / Sign up

Export Citation Format

Share Document