Properties of Silica Ceramic Made from Amorphous Silica

2010 ◽  
Vol 434-435 ◽  
pp. 838-839 ◽  
Author(s):  
Cai Fen Wang ◽  
Jia Chen Liu ◽  
Ji Ping Guo ◽  
Di Song ◽  
Wen Jun Lian

The mixture of amorphous silica extracted from coal fly ash and fused silica was used to prepare density silica ceramic through slip-casting method. The XRD results showed that a large amount of cristobalite was formed at 1300°C which can weaken mechanical properties. The SEM results showed that glassy phase present from fused silica promoted ceramic densification. According to the experiment results, it was found that the bending strength was highest when mixing 65wt% fused silica and sintering at 1200°C for 4 hours.

2012 ◽  
Vol 18 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Biljana Angjusheva ◽  
Emilija Fidancevska ◽  
Vojo Jovanov

Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa) and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min). Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al)(Si,Al)2O6] was formed. Ceramics with optimal properties (porosity 2.96?0.5%, bending strength - 47.01?2 MPa, compressive strength - 170 ?5 MPa) was produced at 1100?C using the heating rate of 10?C/min.


Author(s):  
M N Halmy ◽  
S K Alias ◽  
M A Mat Shah ◽  
M K Maryam ◽  
M A Abu Bakar ◽  
...  

2011 ◽  
Vol 399-401 ◽  
pp. 864-868
Author(s):  
Han Qiao Liu ◽  
Guo Xia Wei ◽  
Yin Liang ◽  
Jun Lan Yang

The glass-ceramics were made of arc-melting slag from incinerator fly ash mixed with glass cullet additive by sintering method. The effects of ball milling time and powder compaction pressure on the microstructure, physical and mechanical properties of the glass–ceramics were respectively investigated. Results showed that with milling time delaying, granularity of the parent glass evidently reduces, the major phases of glass–ceramics have no change but the diffraction peaks present intensive trend, the crystal sizes of glass–ceramics decrease, the properties such as volumetric densities, compressive strength, bending strength and toughness are improved, the appropriate milling time is 6h with fifty percent of the volume (d50 value) of 10.62μm. The physical and mechanical properties first increase and then decrease with compaction pressure increasing, and the optimal compaction pressure is 60MPa.


2011 ◽  
Vol 412 ◽  
pp. 129-132 ◽  
Author(s):  
Jin Ye Niu ◽  
Zhi Wei Chen ◽  
Liu Feng ◽  
Zheng Min Li ◽  
Min Tan

Fused silica micro-powders with D50of 1.8μm were firstly prepared by ball milling. Effects of milling time on particle size distribution and microstructures of the powders were discussed. Then, the green compacts with volume density of 1.86g/cm3was obtained by slip casting with lactic acid as dispersant. Effects of lactic acid content on apparent viscosity of the slurry, thickness and density of the green compacts were investigated. Finally, fused silica ceramics with thermal expansion coefficient of 0.56∙10-6/°C, bending strength of 64MPa and volume density of 1.94g/cm3were prepared.


2014 ◽  
Vol 81 ◽  
pp. 262-267 ◽  
Author(s):  
Ruifang Zhang ◽  
Junjie Feng ◽  
Xudong Cheng ◽  
Lunlun Gong ◽  
Ye Li ◽  
...  

2007 ◽  
Vol 12 ◽  
pp. 123-129
Author(s):  
Kenji KAWAHARA ◽  
Kenichi SATO ◽  
Masashi ISHIDA ◽  
Takuro FUJIKAWA

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2919 ◽  
Author(s):  
Giuseppina Roviello ◽  
Laura Ricciotti ◽  
Antonio Jacopo Molino ◽  
Costantino Menna ◽  
Claudio Ferone ◽  
...  

This research investigates the preparation and characterization of new organic–inorganic geopolymeric foams obtained by simultaneously reacting coal fly ash and an alkali silicate solution with polysiloxane oligomers. Foaming was realized in situ using Si0 as a blowing agent. Samples with density ranging from 0.3 to 0.7 g/cm3 that show good mechanical properties (with compressive strength up to ≈5 MPa for a density of 0.7 g/cm3) along with thermal performances (λ = 0.145 ± 0.001 W/m·K for the foamed sample with density 0.330 g/cm3) comparable to commercial lightweight materials used in the field of thermal insulation were prepared. Since these foams were obtained by valorizing waste byproducts, they could be considered as low environmental impact materials and, hence, with promising perspectives towards the circular economy.


2016 ◽  
Vol 1812 ◽  
pp. 89-94
Author(s):  
Claudia M. Lopez-Badillo ◽  
Jorge López-Cuevas ◽  
Carlos A. Gutiérrez-Chavarría ◽  
José L. Rodríguez-Galicia ◽  
Elia M. Múzquiz-Ramos

ABSTRACTBaAl2Si2O8 and SrAl2Si2O8 were synthesized by solid-state reaction of stoichiometric mixtures of either BaCO3 or SrCO3 with coal fly ash and Al2O3. The mixtures were mechanically activated in an attrition mill for up to 12 h and then reaction-sintered at 900-1300 °C, aiming to promote the formation of BaAl2Si2O8 and SrAl2Si2O8 as well as the conversion from their hexagonal (Hexacelsian) into their monoclinic (Celsian) forms, which is associated with improved mechanical properties in the sintered materials. Especially in the case of SrAl2Si2O8, the formation of Celsian was favored at relatively low sintering temperatures by increasing milling time. Although only the SrAl2Si2O8 composition was fully converted into Celsian, the Hexacelsian to Celsian conversions obtained for the mechanically-activated BaAl2Si2O8 composition were significantly higher than those previously reported in the literature for this compound. This could be attributed to the use of coal fly ash as raw material, which contains mineralizers that promote the mentioned conversion.


Sign in / Sign up

Export Citation Format

Share Document