Experimental Study on the Chip Geometry and Shear Angle in Micro-Cutting Aluminum 7050-T7451

2010 ◽  
Vol 443 ◽  
pp. 657-662
Author(s):  
Jun Zhou ◽  
Jian Feng Li ◽  
Jie Sun

In this paper, the micro-scale machining characteristics of a non-ferrous structural alloy, aluminum 7050-T7451 is investigated through a series of cutting experiments. The effects of cutting speed and undeformed chip thickness on the chip geometry, cutting ratio, effective rake angle and shear angle in orthogonal micro-scale cutting of Al 7075-T7451 are presented. Explanations for the observed trends are also given.

1990 ◽  
Vol 112 (2) ◽  
pp. 184-189 ◽  
Author(s):  
D. V. Hutton ◽  
Qinghuan Yu

Experimental evidence is presented which indicates that the presence of a built-up edge can significantly affect the generation of acoustic emission in metal cutting. Results for machining SAE 1018 and 4140 steels show that the built-up edge can mask the generally accepted AE-cutting speed relation when cutting tools having small rake angles are used. Under cutting conditions conducive to development of a built-up edge, it is shown that increased acoustic emission is generated as a result of increased effective rake angle and corresponding increase of shear angle in the primary deformation zone. Three distinct types of built-up edge have been observed and classified as immature, periodic, or developed, according to effect on acoustic emission.


Author(s):  
Alper Uysal ◽  
Erhan Altan

In this study, the slip-line field model developed for orthogonal machining with a worn cutting tool was experimentally investigated. Minimum and maximum values of five slip-line angles ( θ1, θ2, δ2, η and ψ) were calculated. The friction forces that were caused by flank wear land, chip up-curl radii and chip thicknesses were calculated by solving the model. It was specified that the friction force increased with increase in flank wear rate and uncut chip thickness and it decreased a little with increase in cutting speed and rake angle. The chip up-curl radius increased with increase in flank wear rate and it decreased with increase in uncut chip thickness. The chip thickness increased with increase in flank wear rate and uncut chip thickness. Besides, the chip thickness increased with increase in rake angle and it decreased with increase in cutting speed.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 516 ◽  
Author(s):  
Iyad Alabd Alhafez ◽  
Herbert M. Urbassek

Using molecular dynamics simulation, we study the cutting of an Fe single crystal using tools with various rake angles α . We focus on the (110)[001] cut system, since here, the crystal plasticity is governed by a simple mechanism for not too strongly negative rake angles. In this case, the evolution of the chip is driven by the generation of edge dislocations with the Burgers vector b = 1 2 [ 111 ] , such that a fixed shear angle of ϕ = 54.7 ∘ is established. It is independent of the rake angle of the tool. The chip form is rectangular, and the chip thickness agrees with the theoretical result calculated for this shear angle from the law of mass conservation. We find that the force angle χ between the direction of the force and the cutting direction is independent of the rake angle; however, it does not obey the predictions of macroscopic cutting theories, nor the correlations observed in experiments of (polycrystalline) cutting of mild steel. Only for (strongly) negative rake angles, the mechanism of plasticity changes, leading to a complex chip shape or even suppressing the formation of a chip. In these cases, the force angle strongly increases while the friction angle tends to zero.


1997 ◽  
Vol 119 (1) ◽  
pp. 86-94 ◽  
Author(s):  
D. A. Stephenson ◽  
P. Bandyopadhyay

Obtaining accurate baseline force data is often the critical step in applying machining simulation codes. The accuracy of the baseline cutting data determines the accuracy of simulated results. Moreover, the testing effort required to generate suitable data for new materials determines whether simulation provides a cost or time advantage over trial-and-error testing. The efficiency with which baseline data can be collected is limited by the fact that simulation programs do not use standard force or pressure equations, so that multiple sets of tests must be performed to simulate different machining processes for the same tool-workpiece material combination. Furthermore, many force and pressure equations do not include rake angle effects, so that separate tests are also required for different cutter geometries. This paper describes a unified method for simulating cutting forces in different machining processes from a common set of baseline data. In this method, empirical equations for cutting pressures or forces as a function of the cutting speed, uncut chip thickness, and tool normal rake angle are fit to baseline data from end turning, bar turning, or fly milling tests. Forces in specific processes are then calculated from the empirical equations using geometric transformations. This approach is shown to accurately predict forces in end turning, bar turning, or fly milling tests on five common tool-work material combinations. As an example application, bar turning force data is used to simulate the torque and thrust force in a combined drilling and reaming process. Extrapolation errors and corrections for workpiece hardness variations are also discussed.


1999 ◽  
Vol 122 (3) ◽  
pp. 384-390 ◽  
Author(s):  
Jairam Manjunathaiah ◽  
William J. Endres

A new machining process model that explicitly includes the effects of the edge hone is presented. A force balance is conducted on the lower boundary of the deformation zone leading to a machining force model. The machining force components are an explicit function of the edge radius and shear angle. An increase in edge radius leads to not only increased ploughing forces but also an increase in the chip formation forces due to an average rake angle effect. Previous attempts at assessing the ploughing components as the force intercept at zero uncut chip thickness, which attribute to the ploughing mechanism all the changes in forces that occur with changes in edge radius, are seen to be erroneous in view of this model. Calculation of shear stress on the lower boundary of the deformation zone using the new machining force model indicates that the apparent size effect when cutting with edge radiused tools is due to deformation below the tool (ploughing) and a larger chip formation component due to a lower shear angle. Increases in specific energy and shear stress are also due to shear strain and strain rate increases. A consistent material behavior model that does not vary with process input conditions like uncut chip thickness, rake angle and edge radius can be developed based on the new model. [S1087-1357(00)01302-2]


1977 ◽  
Vol 99 (2) ◽  
pp. 410-418 ◽  
Author(s):  
M. M. Nigm ◽  
M. M. Sadek

The dynamic response of the shear plane and the variations of the dynamic cutting coefficients are experimentally investigated at various values of feed, cutting speed, rake angle, clearance angle, frequency, and amplitude of chip thickness modulation. Wave generating and wave removing cutting tests, in which high-speed photography is used to investigate the geometry of chip formation, are carried out. The theoretical model of dynamic cutting developed in [1] is assessed with reference to these experimental results. A comparison between this model and previous models in relation to the experimental results is also presented.


2003 ◽  
Vol 125 (3) ◽  
pp. 324-332 ◽  
Author(s):  
Y. Ohbuchi ◽  
T. Obikawa

A thermo-elastic-plastic finite element modeling of orthogonal cutting with a large negative rake angle has been developed to understand the mechanism and thermal aspects of grinding. A stagnant chip material ahead of the tool tip, which is always observed with large negative rake angles, is assumed to act like a stable built-up edge. Serrated chips, one of typical shapes of chips observed in single grain grinding experiment, form when analyzing the machining of 0.93%C carbon steel SK-5 with a rake angle of minus forty five or minus sixty degrees. There appear high and low temperature zones alternately according to severe and mild shear in the primary shear zone respectively. The shapes of chips depend strongly on the cutting speed and undeformed chip thickness; as the cutting speed or the undeformed chip thickness decreases, chip shape changes from a serrated type to a bulging one to a wavy or flow type. Therefore, there exists the critical cutting speed over which a chip can form and flow along a rake face for a given large negative rake angle and undeformed chip thickness.


2019 ◽  
Vol 3 (3) ◽  
pp. 53
Author(s):  
Kibbou ◽  
Dellagi ◽  
Majdouline ◽  
Moufki

This work presents an analysis of relationships between the non-linear vibrations in machining and the machined surface quality from an analytical model based on a predictive machining theory. In order to examine the influences of tool oscillations, several non-linear mechanisms were considered. Additionally, to solve the non-linear problem, a new computational strategy was developed. The resolution algorithm significantly reduces the computational times and makes the iterative approach more stable. In the present approach, the coupling between the tool oscillations and (i) the regenerative effect due to the variation of the uncut chip thickness between two successive passes and/or when the tool leaves the work (i.e., the tool disengagement from the cut), (ii) the friction conditions at the tool–chip interface, and (iii) the tool rake angle was considered. A parametric study was presented. The correlation between the surface quality, the cutting speed, the tool rake angle, and the friction coefficient was analyzed. The results show that, during tool vibrations, the arithmetic mean deviation of the waviness profile is highly non-linear with respect to the cutting conditions, and the model can be useful for selecting optimal cutting conditions.


2011 ◽  
Vol 305 ◽  
pp. 198-201
Author(s):  
Guo He Li ◽  
Hou Jun Qi ◽  
Bing Yan

Orthogonal cutting experiments of Fe-36Ni invar alloy are performed. The change of chip morphology with cutting conditions are investigated through metallurgical observation, and the critical cutting speed of adiabatic shear for Fe-36Ni invar alloy at different cutting depths and rake angles are given. In addition, the characteristic of chip deformation before the occurrence of adiabatic shear is also analyzed. The results show that the critical cutting speed decreases with the increase of cutting depth and hardness, but increases with the increase of rake angle. The deformation coefficient tends to a constant value with the increase of cutting speed.


2013 ◽  
Vol 483 ◽  
pp. 3-8 ◽  
Author(s):  
Rui Dong Shen ◽  
Xiu Mei Wang ◽  
Chun Hui Yang

In this study, to simulate the grinding process for rolled homogeneous armor steel (RHA) 4043, a single-grain cutting process is modeled using a three-dimensional (3-D) numerical model, which is developed using a coupled finite element (FE) - smoothed-particle hydrodynamics (SPH) approach. The proposed numerical model is then employed to investigate the influences of grain negative rake angle (-22°, -31°, and-45°) as well as high and super-high cutting speed ranged from 100 m/s to 260 m/s in the cutting processes. The numerical results show the cutting forces are much lower and the maximum chip thickness is much larger when using a smaller grain negative rake angle.


Sign in / Sign up

Export Citation Format

Share Document