Fatigue Damage Behavior Depending on the Bonding Interface Layer in Copper Film Bonded to Base Metals

2010 ◽  
Vol 452-453 ◽  
pp. 253-256 ◽  
Author(s):  
Tashiyuki Torii ◽  
Koki Ishida ◽  
Mohamed K Hassan ◽  
Kenichi Shimizu

Laminated copper films of the epoxy-bonded or diffusion-bonded to the base metal were used in order to investigate and analyze film fatigue behavior depending on the inevitable bonding interfaces for electric/functional parts used in MEMS. Fatigue damage was observed using SEM and crack initiation lives were evaluated at the notch root where the bonding interfaces could be observed directly through the thickness. These observations showed that the resin interface layer caused cracks without slips in a zig-zig pattern and also decreased fatigue crack initiation lives. On the other hand, fatigue damage was observed using an optical microscope on surface of the film with resin bonding or with diffusion bonded interfaces. In this case, many cracks were caused and propagated towards the width direction on the film bonded to the base steel with resin, while slip and cracks were caused along slip lines during fatigue on the film bonded to the base steel by diffusion. There was a significant difference in crack initiation behavior of the films between resin and diffusion bonded to base metals. This finding was not only for crack initiation site but also for roughness near the crack on the film. Using Eulerian equation of motion in continuum, this difference was discussed in terms of elastic displacement field with a wave caused from the base plate subjected to cyclic deformation. Such a wave motion enables us to understand the geometric effects of bonding interfaces on the fatigue damage behavior of the bonded film to base metal.

2013 ◽  
Vol 813 ◽  
pp. 407-412
Author(s):  
Dan Liu ◽  
Xiao Song Jiang ◽  
Pei Qiu Sun ◽  
Yue Shen

nfluence of frequency on fretting fatigue damage behavior of Al-Zn-Mg alloy was studied in this paper. Fretting fatigue lives and damage characteristics of Al-Zn-Mg alloy were researched under different frequencies. Macroscopic tests and microscopic analysis were used to study on influence of frequency on fretting fatigue damage behavior of Al-Zn-Mg alloy. Fatigue lives would be greatly reduced by fretting under the experimental conditions in this paper. With frequency increasing, fretting fatigue lives were firstly decreased and then increased (f=9Hz). Fretting scar, which was the important reason for fretting fatigue crack initiation, was caused by embedding debris; eventually, crack initiated at the edge of the fretting scar. Fretting fatigue fracture is a whole process of crack initiation, propagation and final fracture. And final fracture increased with frequency reducing, which was generally occurred near the center of the fracture.


2014 ◽  
Vol 891-892 ◽  
pp. 1711-1716 ◽  
Author(s):  
Loic Signor ◽  
Emmanuel Lacoste ◽  
Patrick Villechaise ◽  
Thomas Ghidossi ◽  
Stephan Courtin

For conventional materials with solid solution, fatigue damage is often related to microplasticity and is largely sensitive to microstructure at different scales concerning dislocations, grains and textures. The present study focuses on slip bands activity and fatigue crack initiation with special attention on the influence of the size, the morphology and the crystal orientation of grains and their neighbours. The local configurations which favour - or prevent - crack initiation are not completely identified. In this work, the identification and the analysis of several crack initiation sites are performed using Scanning Electron Microscopy and Electron Back-Scattered Diffraction. Crystal plasticity finite elements simulation is employed to evaluate local microplasticity at the scale of the grains. One of the originality of this work is the creation of 3D meshes of polycrystalline aggregates corresponding to zones where fatigue cracks have been observed. 3D data obtained by serial-sectioning are used to reconstruct actual microstructure. The role of the plastic slip activity as a driving force for fatigue crack initiation is discussed according to the comparison between experimental observations and simulations. The approach is applied to 316L type austenitic stainless steels under low-cycle fatigue loading.


2004 ◽  
Vol 126 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Yanyao Jiang ◽  
Miaolin Feng

Fatigue crack propagation was modeled by using the cyclic plasticity material properties and fatigue constants for crack initiation. The cyclic elastic-plastic stress-strain field near the crack tip was analyzed using the finite element method with the implementation of a robust cyclic plasticity theory. An incremental multiaxial fatigue criterion was employed to determine the fatigue damage. A straightforward method was developed to determine the fatigue crack growth rate. Crack propagation behavior of a material was obtained without any additional assumptions or fitting. Benchmark Mode I fatigue crack growth experiments were conducted using 1070 steel at room temperature. The approach developed was able to quantitatively capture all the important fatigue crack propagation behaviors including the overload and the R-ratio effects on crack propagation and threshold. The models provide a new perspective for the R-ratio effects. The results support the notion that the fatigue crack initiation and propagation behaviors are governed by the same fatigue damage mechanisms. Crack growth can be treated as a process of continuous crack nucleation.


Author(s):  
Hyeong-Yeon Lee ◽  
Se-Hwan Lee ◽  
Jong-Bum Kim ◽  
Jae-Han Lee

A structural test and evaluation on creep-fatigue damage, and creep-fatigue crack initiation have been carried out for a Mod. 9Cr-1Mo steel structural specimen with weldments. The conservatisms of the design codes of ASME Section III subsection and NH and RCC-MR codes were quantified at the welded joints of Mod.9Cr-1Mo steel and 316L stainless steel with the observed images from the structural test. In creep damage evaluation using the RCC-MR code, isochronous curve has been used rather than directly using the creep law as the RCC-MR specifies. A y-shaped steel specimen of a diameter 500mm, height 440mm and thickness 6.35mm is subjected to creep-fatigue loads with two hours of a hold time at 600°C and a primary nominal stress of 30MPa. The defect assessment procedures of RCC-MR A16 guide do not provide a procedure for Mod.9Cr-1Mo steel yet. In this study application of σd method for the assessment of creep-fatigue crack initiation has been examined for a Mod. 9Cr-1Mo steel structure.


Author(s):  
Jinhua Shi ◽  
Hassam Dodia

In order to extend the boiler lives at Advanced Gas-Cooled Reactor (AGR) nuclear power stations in the UK, new temperature measuring instrumentation to monitor reactor gas temperature has been proposed to install on the bore of an intact boiler tube to provide additional boiler operating data to support the station lifetime extension. This paper details a creep-fatigue crack initiation assessment of the proposed installation of an instrument guide tube within the superheater header using the latest R5 high temperature assessment procedures based on detailed finite element thermal transient stress analysis values for a bounding start-up and shutdown cycle. The fatigue damage at welds has been calculated based on both weld and parent material properties. The new approach for assessing weldments has been used in this paper. This new approach involves splitting the existing Fatigue Strength Reduction Factor (FSRF) into a Weldment Endurance Reduction (WER), which accounts for reduced fatigue endurance due to weld imperfections, and a Weldment Strain Enhacement Factor (WSEF), which accounts for material mismatch and local geometry. The creep assessments of the weld material locations have been carried out on both parent and weld material properties including the welding residual stress. The total creep-fatigue damage is then obtained as the sum of fatigue damage, Df, and creep damage, Dc.


2007 ◽  
Vol 124-126 ◽  
pp. 1381-1384 ◽  
Author(s):  
Jai Won Byeon ◽  
S.I. Kwun ◽  
Kae Myung Kang

Acoustic emission (AE) technique was applied to evaluate both tensile deformation of 316L stainless steel and bending-fatigue damage of socket-welded pipe. AE activity was monitored during tensile deformation of plate-type specimens subjected to various heat treatments. Variation in RMS voltage of AE signal was correlated with the amount of strain-induced martensite phase. Secondly, actual size of socket-welded pipe specimen was bending-fatigued under various stresses. Crack initiation was determined by observing an abrupt increase in AE count, and confirmed by radiographic examination before and after the crack initiation cycle. Potentials of AE technique for monitoring fatigue crack initiation were discussed.


2014 ◽  
Vol 904 ◽  
pp. 508-512
Author(s):  
Hong Wang ◽  
Ping Yang ◽  
Jun Lin Deng ◽  
Qin Dong

Based on the continuum damage mechanics theory, according to the development of the fatigue damage evolution equation, and combining the interaction coefficient of stiffener and plate, with plastic strain as the control quantity of damage evolution, the stiffened plate low cycle fatigue damage mechanics model is established, and the calculation method of the fatigue crack initiation life is obtained. This method for the initiation life of fatigue crack is divided into the life before the damage and the life of the damage evolution. The model results are compared with those of the finite element results. Conclusions show that the model can reflect the regularity of axial plastic strain evolution of stiffened plate, and can be directly used for fatigue loads analysis under the mechanism of initiation life.


Sign in / Sign up

Export Citation Format

Share Document