Research on the Surface Roughness of Dry Cutting Different Levels of Austempering Ductile Iron (ADI)

2011 ◽  
Vol 464 ◽  
pp. 496-500
Author(s):  
Xiao Hong Xue ◽  
Xu Hong Guo ◽  
Ting Ting Chen ◽  
Dong Dong Wan ◽  
Qiao Wang

Three cutting tools of different materials (ceramics CC6050, cubic boron nitride CB7025, carbide GC2025) are used for dry turning of 9 groups of ADI which heat-treated under different quenching time and quenching temperature. The surface roughness of ADI workpieces were tested after the finish turning at changed cutting parameters, and the influencing factors of surface quality were analysed. Results showed that the surface roughness values of all 9 groups of ADI workpieces obtained by CC6050 were the lowest and the surface quality was better at lower depth of cut ap and feed rate f with higher cutting speed vc . Meanwhile, the surface roughness was influenced by the isothermal quenching parameters of ADI workpieces significantly.

Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


2011 ◽  
Vol 188 ◽  
pp. 38-42
Author(s):  
Dong Dong Wan ◽  
Xu Hong Guo ◽  
Chi Hong Wang

Three different cutting tools (ceramics CC6050, cubic boron nitride CB7025, carbide GC2025) were used for dry cutting of 3 groups of ADI which were heat-treated separately under different quenching temperatures. With the unified cutting parameters, the wear of tool flank of each cutter was studied and the main influencing factors of the wear were analyzed. Results showed that when the cutting parameters ap =0.2mm, f =0.16mm/r, vc =108m/min and the cutting tool was determined, the higher the quenching temperature was the lower the hardness of the test bars were and the tool flank wear was less; When the quenching temperature was determined, the more the produced BUE (build up edge) of the cutting tool was the less the tool flank wear was.


2014 ◽  
Vol 14 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Suha K. Shihab ◽  
Zahid A. Khan ◽  
Aas Mohammad ◽  
Arshad Noor Siddiquee

AbstractThe cutting parameters such as the cutting speed, the feed rate, the depth of cut, etc. are expected to affect the two constituents of surface integrity (SI), i.e., surface roughness and micro-hardness. An attempt has been made in this paper to investigate the effect of the CNC hard turning parameters on the surface roughness average (Ra) and the micro-hardness (μh) of AISI 52100 hard steel under dry cutting conditions. Nine experimental runs based on an orthogonal array of the Taguchi method were performed and grey relational analysis method was subsequently applied to determine an optimal cutting parameter setting. The feed rate was found to be the most influential factor for both the Ra and the μh. Further, the results of the analysis of variance (ANOVA) revealed that the cutting speed is the most significant controlled factor for affecting the SI in the turning operation according to the weighted sum grade of the surface roughness average and micro-hardness.


Author(s):  
Kadir Gok ◽  
Hüseyin Sari ◽  
Arif Gok ◽  
Süleyman Neseli ◽  
Erol Turkes ◽  
...  

In this study, milling operations were carried out using AISI 1040 specimens steel in dry cutting conditions. The cutting tools used in the experiment include P20 tool steel and they also have three different approach angles (45°, 60°, 75°) and rake angles (0°, −6°, −12°). In milling experiments, cutting parameters with a depth of cut of 1.5 mm, cutting speed of 193 m/min, and feed rate of 313 mm/min were selected. A comparison was presented between the force values which were obtained by measured value and predicted with numerical simulations, and then a good agreement was found between measured and predicted force values. As result of, it was observed that the rake and approach angles were effective in milling operations.


2017 ◽  
Vol 261 ◽  
pp. 321-327 ◽  
Author(s):  
Abidin Şahinoğlu ◽  
Şener Karabulut ◽  
Abdulkadir Güllü

In this study, the relationship between the spindle vibration and surface roughness was investigated and the effect of the cutting parameters on surface roughness and spindle vibration during the machining of Aluminum alloy 7075 (Al 7075) were determined. Experimental studies have been carried out on a CNC turning machine using coated cemented carbide cutting tools under dry cutting environment. L64 full factorial design of experiments was used to investigate the optimal machining parameters for spindle vibration and surface roughness. The influences of machining parameters on vibration and surface roughness were evaluated by using analysis of variance (ANOVA) and main effect plots. The results revealed that the feed rate was the most effective cutting parameters on spindle vibration and surface roughness. The machine tool vibration amplitude and surface roughness values were significantly increased with increasing cutting feed. The depth of cut and cutting speed have the least effect on the spindle vibration and indicated an insignificant effect on surface roughness. Mathematical equations were developed to predict the vibration and surface roughness values using the regression analysis.


2011 ◽  
Vol 471-472 ◽  
pp. 233-238 ◽  
Author(s):  
Muhammad Yusuf ◽  
Khairol Anuar ◽  
Napsiah Binti Ismail ◽  
Shamsuddin Sulaiman

This paper presents a study of the quality of a surface roughness model for mild steel with coated carbide cutting tool on turning process. The experiments were carried out under wet and dry cutting conditions. The model is developed based on cutting speed, feed and depth of cut as the parameters of cutting process. This research applies the fractional factorial design of experiment approach to studied the influence of cutting parameters on surface roughness. The measured results were collected and analyzed using commercial software package called Minitab. Analysis of variances is used to examine the influence of turning factors and factor interactions on surface roughness. The result indicated that, there are inherent differences in surface roughness between wet and dry cutting process with the same parameters process model. Analysis of variance was found that feed parameter is the most significant cutting parameter, which influences the surface roughness. The most significant interactions were found between cutting speed and feed parameters for dry turning process. Therefore is a significant effect of using combination of the fluid for cooling the cutting operation.


2015 ◽  
Vol 13 ◽  
pp. 19-22 ◽  
Author(s):  
Gabriel Benga ◽  
Danut Savu ◽  
Adrian Olei

The paper presents the influence of various cutting regimes on the surface roughness, when a hardened bearing steel has been machined using both ceramic and PCBN cutting tools. There were used different cutting conditions varying cutting speed, feed rate and depth of cut in order to determine the influence of each cutting parameter on the surface finish.


2011 ◽  
Vol 117-119 ◽  
pp. 1561-1565
Author(s):  
Muhammad Yusuf ◽  
Mohd Khairol Anuar Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

This paper describes effect of cutting parameters on surface roughness for turning of aluminium alloy 7050 using carbide cutting tool with dry cutting condition. The model is developed based on cutting speed, feed rate and depth of cut as the parameters of cutting process. The selection of cutting process was based on the design of experiments Response Surface Methodology (RSM). The objective of this research is finding the optimum cutting parameters based on surface roughness. The relation between cutting parameters and surface roughness were discussed.


Author(s):  
K. Aslantas ◽  
İ. Ucun ◽  
K. Gök

The study deals with the machinability properties of austempered ductile iron using cubic boron nitride cutting tools. To emphasize the role of the austempering process, ductile iron specimens were first austenitized in salt bath at 900°C for 60min, after which they were quenched in a salt bath at 250°C and 325°C for 60min. Machining tests were carried out at various cutting speeds under the constant depth of cut and the feed rate. Tool performance was evaluated based on the workpiece surface roughness and flank wear. The influence of the austempering temperature and cutting speed on the chip form was also studied. The results point out that the lower austempering temperature results in the increase in the cutting forces, while better surface roughness is attained.


2013 ◽  
Vol 773-774 ◽  
pp. 894-901
Author(s):  
Muhammad Yusuf ◽  
M.K.A. Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

Majority of the components of aerospace and automotive vehicles need different machining operations, mainly for the assembly requirements. The components have to present both high dimensional precision and surface quality. This present work is concerned with the effect of cutting parameters (cutting speed, feed rate and depth of cut) on the surface roughness and the chip formation in turning process. The machining results are compared with LM6 aluminium alloy and TiC reinforced metal matrix composite under the same cutting conditions and tool geometry. The cutting condition models designed based on the Design of Experiments Response Surface Methodology. The objective of this research is to obtaining the optimum cutting parameters to get a better surface quality and also the chip formation and furthermore does not hazardous to the worker and the machined products quality. Results shows that Surface roughness values of LM6-TiC composite are higher as compared LM6 alloy at similar cutting condition. With increasing in cutting speed improves the surface quality. The surface quality increases with decrease of the feed rate and the depth of cut. There are difference chip forms for LM6 aluminium alloy and Al-TiC composite for a similar of cutting condition. Generally, chip formations of both materials are acceptable and favourable for the worker as well as the products and the tools.


Sign in / Sign up

Export Citation Format

Share Document