Evaluation of the Performance of CBN Tools When Turning Austempered Ductile Iron Material

Author(s):  
K. Aslantas ◽  
İ. Ucun ◽  
K. Gök

The study deals with the machinability properties of austempered ductile iron using cubic boron nitride cutting tools. To emphasize the role of the austempering process, ductile iron specimens were first austenitized in salt bath at 900°C for 60min, after which they were quenched in a salt bath at 250°C and 325°C for 60min. Machining tests were carried out at various cutting speeds under the constant depth of cut and the feed rate. Tool performance was evaluated based on the workpiece surface roughness and flank wear. The influence of the austempering temperature and cutting speed on the chip form was also studied. The results point out that the lower austempering temperature results in the increase in the cutting forces, while better surface roughness is attained.

Author(s):  
Ahmet Akdemir ◽  
Şakir Yazman ◽  
Hacı Saglam ◽  
Mesut Uyaner

Ductile iron can acquire enhanced thermal and mechanical properties from austempering heat treatment. The present study aims to identify the function of different cutting parameters affecting machinability and to quantify its effects. Turning was performed to test machinability according to the ISO3685-1993 (E) standard. After austenitizing at 900 °C for 90 min, austempered ductile iron (ADI) specimens were quenched in a salt bath at 380 °C for 90 min. The cutting force signals along three directions were measured in real time, whereas flank wear and surface roughness were measured offline. For the cutting parameters, the cutting speed and depth of cut were varied, but the feed rate was kept constant. In the flank wear tests, machining length was corresponded to tool life. In addition, in order to find out the effect of cutting parameters on surface roughness (Ra), tangential force (Ft), and flank wear (VB) during turning, response surface methodology (RSM) was utilized by using experimental data. The effect of the depth of cut on the surface roughness was negligible but considerable in the cutting forces. The increased cutting speed produced a positive effect on surface roughness. It is found that the cutting speed was the dominant factor on the surface roughness, tangential force, and flank wear.


2021 ◽  
Vol 16 (2) ◽  
pp. 200
Author(s):  
Rusnaldy Rusnaldy ◽  
Yusuf Umardani ◽  
Diva Tsamara Putra ◽  
Jovian Bernard

<p><em>Austempered ductile iron (ADI) is a difficult material for machining, </em><em>even though ADI is believed to have several advantages such as strength, ductility, high toughness, fatigue resistance, good dynamic wear resistance, has a good strength-to-weight ratio, easy to manufacture  and easy to cast that causes it to be widely used in various applications.  </em><em>This study investigates the effect of milling parameters on surface rougness and chip thickness ratio on milling of ADI. To produce ADI, ductile irons  were first austenitized in furnace at 900<sup>o</sup>C for 1 hour and then they were quenched in salt bath at 375<sup>o</sup>C for 1 hour. The work material was machined with uncoated carbide tool. The tool was 20 mm in diameter. The cutting experiments were carried out in the dry mode. The feed was varied from 0.05 to 0.1 mm/tooth for cutting speed ranging from 15 m/min to 25 mm/min and depth of cut ranging from 0.1 mm to 0.3 mm. The surface roughness was measured using the Mitutoyo SJ-201, surface roughness machine. The chip thickness was measured using software Image J from the photograph produced by digital microscope endoscope. The results show that connected and loose chips were produced. Long and continuous chips were not found in this study. The effects of cutting speeds, feeds and depth of cut on surface roughness and chip thickness ratio  are reported in this paper</em><em></em></p>


2011 ◽  
Vol 464 ◽  
pp. 496-500
Author(s):  
Xiao Hong Xue ◽  
Xu Hong Guo ◽  
Ting Ting Chen ◽  
Dong Dong Wan ◽  
Qiao Wang

Three cutting tools of different materials (ceramics CC6050, cubic boron nitride CB7025, carbide GC2025) are used for dry turning of 9 groups of ADI which heat-treated under different quenching time and quenching temperature. The surface roughness of ADI workpieces were tested after the finish turning at changed cutting parameters, and the influencing factors of surface quality were analysed. Results showed that the surface roughness values of all 9 groups of ADI workpieces obtained by CC6050 were the lowest and the surface quality was better at lower depth of cut ap and feed rate f with higher cutting speed vc . Meanwhile, the surface roughness was influenced by the isothermal quenching parameters of ADI workpieces significantly.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2018 ◽  
Vol 142 ◽  
pp. 03002
Author(s):  
Yunhai Jia ◽  
Lixin Zhu

Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.


2019 ◽  
Vol 805 ◽  
pp. 3-7
Author(s):  
Manus Sriswat ◽  
Kittipong Kimapong ◽  
Atthakorn Chanchana

Grinding process is necessary final process of making cylindrical parts with less than Ra 0.4 surface roughness. Generally we cannot obtain good surface quality without grinding process. As the experience of the authors, using CBN (Cubic Boron Nitride) insert to turning cylindrical parts could be obtained Ra 0.438 surface roughness. The surface roughness result is similar to ground parts. This result becomes the main focus of the study. Authors study to find out factors affecting CBN performance in turning with CBN to obtain less than Ra 0.4 surface roughness. According to the study, it was found that tool contact area allied to surface roughness. The experiment is turning S45C medium carbon steel under the following condition: Cutting speed is 300 m./min, Feed is 0.05 mm./rev and depth of cut is 0.1 mm. Experiment under the same condition in different contact area. Modify contact area of CBN insert to be 5,10,15,20 and 25 mm. and testing in order. CBN insert standard type contact area is 0 mm. Compare test results of modified CBN inserts with standard type result. The results of experiments were as follows: 1) Turning steel with CBN contact area 10 mm. was obtained Ra 0.456 surface roughness, 2) Turning steel with CBN contact area 15 mm. was obtained Ra 0.293 surface roughness, Thus less than Ra 0.4 surface roughness.


2016 ◽  
Vol 23 (6) ◽  
pp. 743-750 ◽  
Author(s):  
Ergün Ekici ◽  
Mahmut Gülesin

AbstractIn this study, the effects of the particle reinforcement ratio on cutting forces and surface roughness were investigated when milling particle-reinforced metal matrix composite (MMCp) produced by hot pressing with different cutting tools. Alumix 123 alloy as the matrix material and B4C particles with an average size of 27 μm and 5%, 10% and 15% ratio as reinforcing elements were used for the manufacture of composite materials. The experiments were carried out in dry cutting conditions with four different cutting speeds, constant feed rate and depth of cut. Changes depending on the increased reinforcement ratio in cutting forces and surface roughness values were investigated; the effects of 10% B4C reinforced composite on tool wear were also examined. It was observed that cutting forces increased with the increase in cutting speed and particle ratio with carbide cutting tools, and it was seen that the cutting forces on the cutting tools decreased when cutting speed decreased and the cutting forces increased as the reinforcement ratios increased. In addition, with increasing the cutting speed, the surface roughness of the machined surfaces of composite samples increased with the carbide tools, while the cubic boron nitride (CBN) tools have the opposite effect. While it was seen that flank and crater wear occurred on the cemented carbide cutting tools, abrasive, adhesive and other wear mechanism tools in addition to the main wear mechanism, no remarkable flank and crater wear occurred on CBN cutting tools.


Sign in / Sign up

Export Citation Format

Share Document