Optimization Design of MEMS Thermal Actuator for Food Industry

2011 ◽  
Vol 467-469 ◽  
pp. 373-376
Author(s):  
Yan Jue Gong ◽  
Fu Zhao ◽  
Hui Yu Xiang ◽  
Li Zhang

Micro-actuator is the key device for the MEMS to perform physical functions. According to a kind of bimorph thermal actuator, this article presents an optimum design method to improve the sensitivity of MEMS actuator. Based on thermal analysis of software ANSYS, the thermal displacement and distribution of temperature field can be obtained clearly. Then a series of reasonable parameters are determined by optimum calculation. The simulation comparison analyses including thermal displacement, stress distribution and fatigue life are carried out to demonstrate that the sensitivity of the optimized structure has been improved effectively by the presented optimization method.

2011 ◽  
Vol 179-180 ◽  
pp. 392-397
Author(s):  
Yan Jue Gong ◽  
Fu Zhao ◽  
Hui Yu Xiang ◽  
Li Zhang

Micro-actuator technology is important base of design and fabrication MEMS. According to a kind of bimorph thermal actuator, this paper obtains the thermal deflection and temperature distribution of MEMS thermal actuator by using finite element analysis. The relationship between the thermal deflection and some parameter such as length of flexure are analyzed in detail. Through simulation comparison, the influences of the length of flexure on thermal deflection and fatigue life are verified, which provides a good guide for the design of MEMS thermal actuator further.


2018 ◽  
Vol 91 (1) ◽  
pp. 124-133
Author(s):  
Zhe Yuan ◽  
Shihui Huo ◽  
Jianting Ren

Purpose Computational efficiency is always the major concern in aircraft design. The purpose of this research is to investigate an efficient jig-shape optimization design method. A new jig-shape optimization method is presented in the current study and its application on the high aspect ratio wing is discussed. Design/methodology/approach First, the effects of bending and torsion on aerodynamic distribution were discussed. The effect of bending deformation was equivalent to the change of attack angle through a new equivalent method. The equivalent attack angle showed a linear dependence on the quadratic function of bending. Then, a new jig-shape optimization method taking integrated structural deformation into account was proposed. The method was realized by four substeps: object decomposition, optimization design, inversion and evaluation. Findings After the new jig-shape optimization design, both aerodynamic distribution and structural configuration have satisfactory results. Meanwhile, the method takes both bending and torsion deformation into account. Practical implications The new jig-shape optimization method can be well used for the high aspect ratio wing. Originality/value The new method is an innovation based on the traditional single parameter design method. It is suitable for engineering application.


2014 ◽  
Vol 662 ◽  
pp. 160-163
Author(s):  
Lei Xu

The optimization design method was rarely used to design the gravity buttress of arch dam in the past. With this in mind, the parametric description of gravity buttress is given, and the auto-calculation of its exerting loads and the safety coefficient of anti-slide stability are realized subsequently. Then, the optimization design model of gravity buttress and the procedures of optimization design are presented using the asynchronous particle swarm optimization method. Finally, ODGB software, which is short for Optimization Design of Gravity Buttress software, is developed and verified.


Author(s):  
Zhen Li ◽  
Baoyuan Sun ◽  
Min Qian ◽  
Jun Zhang

In order to improve the situation that the design of microactuator is mostly based on the intuition and experience of researchers, the method of continuum topology optimization using the nodal density is introduced to the conceptual design of microactuator. This new method can ensure C0 continuity of density field in a fixed design domain. The ratio of mutual energy to strain energy of the mechanism is regarded as the objective function, where, the mutual energy and strain energy describe the kinematic function and structural function of microactuator respectively. The final configuration of microactuator is decided on the guide of conceptual design combined with the given working conditions. The finite element method is applied to analysis the transmission ratio and clamping force of microactuator. The prototype of the microactuator is fabricated by using micro-electroforming and SU-8 photolithography techniques and the displacement of the micro actuator is measured by using the stereo vision microscopy. The experimental results show that the properties of the micro actuator can satisfy the designing demands. This topological optimization method based on nodal density plays an important role in guiding the structure design of micro actuator.


2013 ◽  
Vol 444-445 ◽  
pp. 259-263
Author(s):  
Yan Hong Fan

The effect of steps in the line search on the consistence of adjoint-based drag reduction of airfoil is investigated in this paper. Constant step adopted in drag reduction design usually gives different optimization results and choice of constant step often depends on designers experience and optimization problem. Bracket method is applied to automatically give the optimal step in performing drag reduction design of airfoils RAE2822 and S73613 and the consistent optimal results are obtained. The results illustrate that the linear search method can automatically find the optimal step, and overcome the restriction on choice of user-defined constant step which is used in the traditional adjoint-based optimization method. That is, it reduces the dependence of step in the drag reduction design, and improves the robustness of the adjoint-based airfoil drag reduction optimization design method.


2014 ◽  
Vol 678 ◽  
pp. 325-332
Author(s):  
Feng Yan Yang ◽  
Xiang Zhen Yan ◽  
Zheng Rong Song ◽  
Ming Wang Yang ◽  
Zi Kun Zhao ◽  
...  

The optimization design method of geometric parameters of skid shoe which is used to subject weight of marine structures is proposed. Considering skid shoe as steel frame structure, total weight and the bearing capacity of the skid shoe are selected as optimal objectives, and geometric parameters of the skid shoe are taken as design variables. Taking the strength, stiffness, local stability of the skid shoe as the constraint conditions, multi-objectives constraints optimization model of geometric parameters is established, and solved based on complex method. According to research results, a computer program has been developed using VC language. Then geometric optimum parameters of skid shoe in service of CNOOC are analyzed by the program. The results show that optimized design decreases steel volume, steel plate thickness by 28.7%, 18.4%, respectively, compared with original design. The optimization method has a series of advantages, such as simple model, fast calculating speed, high calculation accuracy.


Author(s):  
Hongbin Gao ◽  
Junjun Chen

To improve the robustness of the shearer cutting part and reduce the manufacturing cost, in this study, the gear transmission system of a shearer’s cutting unit can be divided into three basic components: single-gear-on-one-shaft form, the planetary reduction form, and double-gears-on-one-shaft form. The dynamic differential equations of each structure are established in this study, and the volume functions of the three basic components are obtained. The characteristics of the internal excitation of the gear transmission system are analyzed, and a scheme for solving the motion parameters of each component is formulated based on the harmonic balance method. Based on the parameters, such as tooth width, tooth number, and modulus, as optimized variables, a robust optimization method minimizing the multi-parameter evaluation function, which is weighted linearly by dimensionless vibration and volume of the gear transmission system, is presented. The gear transmission system of a sample shearer’s cutting unit is optimized using the proposed method. The results show that the transmission system’s size decreases by 5.4%, the drum’s maximum torsional acceleration decreases by 17.8%, and the first gear’s maximum torsional acceleration decreases by 9.6%. Thus, we conclude that the optimum design method decreases a shearer’s manufacturing cost and decreases the cutting unit’s failure rate.


2011 ◽  
Vol 415-417 ◽  
pp. 460-463
Author(s):  
Li Liu ◽  
Hong Xia Liu

In the design of wrapping hoist, the roller strength is always a larger problem. In this paper, diameter, wall thickness and side plate thickness of the roller were selected as design variables, and volume of the roller acts as object function. Through analyzing its inner stresses, the mechanical model and mathematical model were set up. Adopting the optimization method of covering complex and VB programming software, an application software of a hoist roller optimization design was got. An example is used to verify correctness and practicability of the software. This optimization design method has practical significance on reducing the weight and material of a hoist roller.


Author(s):  
Yu Yang ◽  
Zhigang Wang ◽  
Binwen Wang ◽  
Shuaishuai Lyu

Wing's morphing leading edge, drooping in a seamless way, has significant potential for noise abatement and drag reduction. Innovative design methods for compliant skin and internal actuating mechanism, respectively, are proposed and validated through a mockup in this paper. For the skin, a collaborative optimization method is presented, which takes all design variables, continuous and discrete, into account simultaneously. Moreover, to overcome the drawback of conventional algorithm, which is insufficient for deformation control in critical regime, weight penalty is imposed on present objective function. On the other hand, an internal kinematic actuating mechanism is designed from an improved concept, of which positions of level-rod hinges are optimized in a larger zone to fit the deflection requirement. The test of mockup validates the above methods, and excellent morphing quality of the compliant skin proves the advancement of the collaborative optimization method. However, the design method of internal actuating mechanism needs further improvement, and the error induced deteriorates the final morphing quality of the mockup.


2011 ◽  
Vol 88-89 ◽  
pp. 592-595
Author(s):  
Xu Zhang ◽  
Guo Jun Bi ◽  
Li Wei Li ◽  
Wei Wei Cui ◽  
Ji Jun Cui ◽  
...  

The dimension synthesis of crank rocker mechanism used in torque exciter was carried out with known angular displacement of rocker swing. Optimization method based on minimum kinetic energy of whole mechanism was adopted under constraint condition of minimum transmission angle and mechanism bar existence condition. Optimization design function was applied in solution and a design method of crank rocker mechanism was developed. The torque exciter has been in operation, achieving scheduled function for dynamic performance test, and all testing data are exact and valid.


Sign in / Sign up

Export Citation Format

Share Document