Validation of Modified Lemaitre’s Anisotropic Damage Model with the Cross Die Drawing Test

2011 ◽  
Vol 488-489 ◽  
pp. 49-52 ◽  
Author(s):  
M.S. Niazi ◽  
H. H. Wisselink ◽  
T. Meinders

Dual Phase (DP) steels are widely replacing the traditional forming steels in automotive industry. Advanced damage models are required to accurately predict the formability of DP steels. In this work, Lemaitre’s anisotropic damage model has been slightly modified for sheet metal forming applications and for strain rate dependent materials. The damage evolution law is adapted to take into account the strain rate dependency and negative triaxialities. The damage parameters for pre-production DP600 steel were determined. The modified damage models (isotropic and anisotropic) were validated using the cross die drawing test. The anisotropic damage model predicts the crack direction more accurately.

2011 ◽  
Vol 21 (5) ◽  
pp. 713-754 ◽  
Author(s):  
M. S. Niazi ◽  
H. H. Wisselink ◽  
T. Meinders ◽  
J. Huétink

The Lemaitre's continuum damage model is well known in the field of damage mechanics. The anisotropic damage model given by Lemaitre is relatively simple, applicable to nonproportional loads and uses only four damage parameters. The hypothesis of strain equivalence is used to map the effective stress to the nominal stress. Both the isotropic and anisotropic damage models from Lemaitre are implemented in an in-house implicit finite element code. The damage model is coupled with an elasto-plastic material model using anisotropic plasticity (Hill-48 yield criterion) and strain-rate dependent isotropic hardening. The Lemaitre continuum damage model is based on the small strain assumption; therefore, the model is implemented in an incremental co-rotational framework to make it applicable for large strains. The damage dissipation potential was slightly adapted to incorporate a different damage evolution behavior under compression and tension. A tensile test and a low-cycle fatigue test were used to determine the damage parameters. The damage evolution was modified to incorporate strain rate sensitivity by making two of the damage parameters a function of strain rate. The model is applied to predict failure in a cross-die deep drawing process, which is well known for having a wide variety of strains and strain path changes. The failure predictions obtained from the anisotropic damage models are in good agreement with the experimental results, whereas the predictions obtained from the isotropic damage model are slightly conservative. The anisotropic damage model predicts the crack direction more accurately compared to the predictions based on principal stress directions using the isotropic damage model. The set of damage parameters, determined in a uniaxial condition, gives a good failure prediction under other triaxiality conditions.


2020 ◽  
Author(s):  
Chuang Liu ◽  
Dongzhi Sun ◽  
Xianfeng Zhang ◽  
Florence Andrieux ◽  
Tobias Gerster

Abstract Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry. To study the mechanical behavior of a typical ductile cast iron (GJS-450) with nodular graphite, uni-axial quasi-static and dynamic tensile tests at strain rates of 10− 4, 1, 10, 100, and 250 s− 1 were carried out. In order to investigate the effects of stress state, specimens with various geometries were used in the experiments. Stress–strain curves and fracture strains of the GJS-450 alloy in the strain-rate range of 10− 4 to 250 s− 1 were obtained. A strain rate-dependent plastic flow law based on the Voce model is proposed to describe the mechanical behavior in the corresponding strain-rate range. The deformation behavior at various strain rates is observed and analyzed through simulations with the proposed strain rate-dependent constitutive model. The available damage model from Bai and Wierzbicki is extended to take the strain rate into account and calibrated based on the analysis of local fracture strains. The validity of the proposed constitutive model including the damage model was verified by the corresponding experimental results. The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys. The predictions with the proposed constitutive model and damage models at various strain rates agree well with the experimental results, which illustrates that the rate-dependent flow rule and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012073
Author(s):  
Xueyao Hu ◽  
Jiaojiao Tang ◽  
Wei Xiao ◽  
Kepeng Qu

Abstract A progressive damage model was presented for carbon fiber woven composites under low velocity impact, considering the strain rate sensitivity of both mechanical properties and failure mechanisms. In this model, strain rate dependency of elastic modulus and nominal strength along in-plane direction are considered. Based on the Weibull distribution, stiffness progressive degradation is conducted by introducing strain rate dependent damage variables for distinct damage modes. With the model implemented in ABAQUS/Explicit via user-defined material subroutine (VUMAT), the mechanical behavior and possible damage modes of composites along in-plane direction can be determined. Furthermore, a bilinear traction separation model and a quadratic stress criterion are applied to predict the initiation and evolution of interlaminar delamination. Comparisons are made between the experimental results and numerical simulations. It is shown that the mechanical response and damage characteristics under low velocity impact, such as contact force history and delamination, are more consistent with the experimental results when taken the strain rate effect into consideration.


Author(s):  
Bahador Bahmani ◽  
Philip Clarke ◽  
Reza Abedi

The microstructural design has an essential effect on the fracture response of brittle materials. We present a stochastic bulk damage formulation to model dynamic brittle fracture. This model is compared with a similar interfacial model for homogeneous and heterogeneous materials. The damage models are rate-dependent, and the corresponding damage evolution includes delay effects. The delay effect provides mesh objectivity with much less computational efforts. A stochastic field is defined for material cohesion and fracture strength to involve microstructure effects in the proposed formulations. The statistical fields are constructed through the Karhunen-Loeve (KL) method. An advanced asynchronous Spacetime Discontinuous Galerkin (aSDG) method is used to discretize the final system of coupled equations. Application of the presented formulation is shown through dynamic fracture simulation of rock under a uniaxial compressive load. The final results show that a stochastic bulk damage model produces more realistic results in comparison with a homogenizes model.


2013 ◽  
Vol 07 (03) ◽  
pp. 1350027
Author(s):  
JIE LI ◽  
QIAOPING HUANG

A new rate-dependent stochastic damage model for the dynamic modeling of concrete is presented in the paper. This model is formulated on the basis of the stochastic damage model, from which, the static stochastic evolution of damage is strictly derived. Then, rate dependency of concrete is included by means of viscous-damage mechanism. The model predictions are tested against experimental results on concrete specimens that cover different strain rates. The results demonstrate the proposed model may predict dynamic failure behavior of concrete quite well.


2017 ◽  
Vol 52 (3) ◽  
pp. 177-189 ◽  
Author(s):  
Hyun-Suk Nam ◽  
Yun-Jae Kim ◽  
Jin-Weon Kim ◽  
Jong-Sung Kim

This article presents an energy-based method to simulate ductile tearing under dynamic loading conditions. The strain rate–dependent material properties are characterized by the Johnson–Cook-type model. The damage model is defined based on the multi-axial fracture strain energy concept. The proposed damage model is applied to simulate the fracture toughness test of SA508 Gr. 1a under four different test speeds. Simulated results show a good overall agreement with the experimental results.


2013 ◽  
Vol 23 (04) ◽  
pp. 565-616 ◽  
Author(s):  
DOROTHEE KNEES ◽  
RICCARDA ROSSI ◽  
CHIARA ZANINI

We analyze a rate-independent model for damage evolution in elastic bodies. The central quantities are a stored energy functional and a dissipation functional, which is assumed to be positively homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage variable and the displacements, solutions may have jumps as a function of time. The latter circumstance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical concept of global energetic solution fails to describe accurately the behavior of the system at jumps. Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on arclength reparametrization. In this way, in the limit we obtain a novel formulation for the rate-independent damage model, which highlights the interplay of viscous and rate-independent effects in the jump regime, and provides a better description of the energetic behavior of the system at jumps.


Sign in / Sign up

Export Citation Format

Share Document