Recognition and Electrochemical Sensing of 8-Hydroxydeoxyguanosine with Molecularly Imprinted Poly (ethylene-co-vinyl alcohol) Thin Films

2011 ◽  
Vol 495 ◽  
pp. 331-334 ◽  
Author(s):  
Mei Hwa Lee ◽  
Tain Chin Tsai ◽  
Chun Yueh Huang ◽  
Bin Da Liu ◽  
Hung Yin Lin

Biosensors using the mechanisms of electrochemical, optical, mass sensitive thermometric and magnetometric have been intensively investigated [1], and molecularly imprinted polymers (MIPs) has been used as recognition elements in sensors reviewed in numerous articles [1-3]. A severe challenge for MIP sensors is detection in chemically diverse environments, such as biological fluids [4-7]. There are many biomarkers discovered in biological fluid, like cerebrospinal fluid (CSF), saliva, serum and urine. Important biomarkers such as creatinine [4], urea, and albumin [8], urine contains non-protein nitrogen metabolites, carbohydrates [9], proteins and amino acids [10]; detection of analytes must be made amid this complex chemical background.

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4607
Author(s):  
Dounia Elfadil ◽  
Abderrahman Lamaoui ◽  
Flavio Della Pelle ◽  
Aziz Amine ◽  
Dario Compagnone

Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.


BioTechniques ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 406-419
Author(s):  
Zahra El-Schich ◽  
Yuecheng Zhang ◽  
Marek Feith ◽  
Sarah Beyer ◽  
Louise Sternbæk ◽  
...  

Molecularly imprinted polymers (MIPs) are currently widely used and further developed for biological applications. The MIP synthesis procedure is a key process, and a wide variety of protocols exist. The templates that are used for imprinting vary from the smallest glycosylated glycan structures or even amino acids to whole proteins or bacteria. The low cost, quick preparation, stability and reproducibility have been highlighted as advantages of MIPs. The biological applications utilizing MIPs discussed here include enzyme-linked assays, sensors, in vivo applications, drug delivery, cancer diagnostics and more. Indeed, there are numerous examples of how MIPs can be used as recognition elements similar to natural antibodies.


2020 ◽  
Vol 16 (2) ◽  
pp. 119-137 ◽  
Author(s):  
Asmaa M. Fahim ◽  
Bartłomiej Wasiniak ◽  
Jerzy P. Łukaszewicz

Background: Molecularly imprinted polymers (MIPs) are utilized in the separation of a pure compound from complex matrices. A stable template-monomer complex generates MIPs with the highest affinity and selectivity for the template. In this investigation, degradation of Poly(ethylene terephthalate) PET afforded the (E)-4-(2-cyano-3-(dimethylamino) acryloyl) benzoic acid (4) (TAM) which used TAM as template which interacts with Methacrylic Acid (MAA) monomer, in the presence of CH3CN as progen. The TAM-MMA complex interactions are dependent on stable hydrogen bonding interaction between the carboxylic acid group of TAM and the hydroxyl group of MMA with minimal interference of porogen CH3CN. The DFT/B3LYP/6-31+G model chemistry was used to optimize their structures and frequency calculations. The binding energies between TAM with different monomers showed the most stable molar ratio of 1:4 which was confirmed through experimental analysis. Methods: The present work describes the synthesis of (E)-4-(2-cyano-3-(dimethylamino) acryloyl) benzoic acid (4) (TAM) from PET waste and formation of molecularly imprinted polymer from TAM with the methacrylic acid monomer. The optimization of molecular imprinted was stimulated via DFT/B3LYP/6-31G (d). The imprinted polymer film was characterized via thermal analysis, pore size, FT-IR and scanning electron microscopy. Results: The most stable molecularly imprinted polymers (MIPs) showed binding energy of TAM(MMA4)=-2063.456 KJ/mol with a small value of mesopores (10-100 Å). Also, the sorption capability of TAM-MIPs showed 6.57 mg/g using STP-MIP-9VC. Moreover, the average pore size ranged between 0.2-1 nm with the BET surface about 300 m2/g. Conclusion: The proposed TAM exhibited a high degree of selectivity for MMA in comparison with other different monomers through hydrogen bond interaction, which was thermally stable, good reproducibility and excellent regeneration capacity and elucidated in the computational study and analytical analysis.


Sign in / Sign up

Export Citation Format

Share Document