Influence of F/P on Structure and Thermal Property of Phenolic Resin

2012 ◽  
Vol 500 ◽  
pp. 98-103 ◽  
Author(s):  
Zhi Qin Chen ◽  
Wei Jun Zeng ◽  
Yang Fei Chen ◽  
Wen Kui Li ◽  
Hong Bo Liu

The influence of F/P on structure and thermal property of resin was studied. Six resins were synthesized with different molar ratios of F/P. These resins were cured by means of temperature and without catalyst. The characterization of the resin was done by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and differential thermo gravimetric analysis (DTG). From the thermal properties of fully cured resins, characteristic properties including pyrolysis temperature and char yield were obtained. A maximum in the benzene ring substitutions, methylene bridge and the result of the thermal properties allow us to say that the resin with F/P molar ratio 1.2 has the highest crosslinking density and highest char yield, over 73%.

2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Madalina Angelusiu ◽  
Maria Negoiu ◽  
Stefania-Felicia Barbuceanu ◽  
Tudor Rosu

The paper presents the synthesis and characterization of Cu(II), Co(II), Ni(II), Cd(II), Zn(II) and Hg(II) complexes with N1-[4-(4-bromo-phenylsulfonyl)-benzoyl]-N4-(4-methoxyphenyl)-thiosemicarbazide. The new compounds were characterized by IR, EPR, electronic spectroscopy, magnetic moments, thermo-gravimetric analysis and elemental analysis.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
J. L. Feng ◽  
C. Y. Yue ◽  
K. S. Chian

AbstractThis project aims to develop and characterize a series of bismaleimide (BMI) polymers based on maleic anhydride and aliphatic-ether diamines. The effects of varying the chain length of aliphatic-ether diamines on the resultant bismaleimide systems were evaluated so that their suitability for microelectronics applications could be evaluated. The synthetic reaction and properties of the bismaleimide materials were investigated using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermo- Gravimetric Analysis (TGA), Dielectric Thermal Analysis (DEA) and rheometry. Results showed that thermal, dielectric and rheological properties were all affected by the main chain length of BMI. The magnitude of the dielectric constant at 100 kHz increases with the increasing chain length. The curing peak temperature, curing heat and degradation temperature of BMI, all decrease with the increasing chain length.


1970 ◽  
Vol 44 (4) ◽  
pp. 473-478 ◽  
Author(s):  
MS Jamal ◽  
Mohammad Ismail ◽  
M Yunnus Miah ◽  
M Naimul Haque ◽  
Sujit Kumar Banik

Heavy fuel oil (furnace oil) was thermally cracked by thermal cracker under different parametric conditions such as cracking temperature, molar ratio of heavy oil to diesel and cracking time to optimize the yield of the final product. In this thermal cracking process, the yield was gradually increased with the increase in temperature and time. After a certain temperature and time no significant increase in yield was observed. Thermo gravimetric analysis (TGA) was done to observe the percentage of weight loss with increasing temperature. The obtained cracked oil was fractionated by atmospheric vacuum distillation unit. Products obtained from different experiments under different conditions showed almost similar physico-chemical properties. Optimization was done on the basis of yield (%wt). The optimum yield (56.2%) of light petroleum fraction (gasoline) was obtained under the following experimental conditions: cracking temperature: 445°C; molar ratio of furnace oil to diesel 95:05; and cracking time: 30 min. The properties such as density, water content, ash content, pour point, flash point, viscosity, range of boiling point, sulphur content, carbon residue, octane number etc. of the obtained light petroleum fraction were found almost similar to that of the commercial grade gasoline. Key words: Furnace oil; Thermal cracking; Gasoline; Thermo gravimetric analysis. DOI: 10.3329/bjsir.v44i4.4601 Bangladesh J. Sci. Ind. Res. 44(4), 473-478, 2009


2011 ◽  
Vol 374-377 ◽  
pp. 1426-1429
Author(s):  
Xiao Meng Guo ◽  
Jian Qiang Li ◽  
Xian Sen Zeng ◽  
De Dao Hong

In this study, the thermal properties of a kind of new geotextile materials, so called controlled permeable formwork (CPF), were studied. Thermo-gravimetric analysis showed that the weight of CPF didn’t change much between 0~350 °C. Dynamic mechanical analysis showed that the storage modulus of CPF reduced from 25 MPa to around 10 MPa when the temperature rose to above 100 °C. The strength of sample decreased slightly with the increase of the temperature. The breaking elongation changed slightly with a maximum at 80 °C. The CPF showed excellent thermal stability and was suitable for general use in construction work.


Author(s):  
Nirmal Halder

<p><span>Characterization of tea waste, cooked waste has been done by various authors but for the first time it has been done for understanding the necessity of thermophilic digestion. And for this kind of digestion takes place in thermophilic digester for efficient biogas production. Detailed morphological analysis of feedstock has been determined. In the present study, thermo gravimetric analysis carried out For easy and fast digestion of cooked waste, a novel design of thermophilic digester is proposed and tested.</span></p>


2009 ◽  
Vol 416 ◽  
pp. 416-420 ◽  
Author(s):  
Wei Li ◽  
Zhi Yang Song ◽  
Tian Ming Yu ◽  
Bao Gong Geng

A new BCB (Bamboo Charcoal Bonded) grinding wheel was developed by bamboo charcoal-phenolic resin composite under vacuum for ELID grinding technology. The pyrolysis behavior of the new bamboo charcoal-phenolic resin material was studied by thermo gravimetric analysis (TGA), and structural characterization of the new material was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD), the friction characteristics was also investigated in this paper.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Abdol Reza Hajipour ◽  
Saeed Zahmatkesh ◽  
Arnold E. Ruoho

AbstractThis paper deals with the polycondensation between a chiral diacyl chloride (N,N′-Pyromelliticdiimido-di-L-leucine chloride) and six different dihydrazides. The corresponding poly (hydrazide-imide)s which have been obtained in quantitative yields are moderately soluble in polar aprotic solvents, have good thermal stability and optical activity. The synthetic compounds have been characterized by IR, UV and 1H NMR spectroscopy, elemental analysis and specific rotation. The thermal properties of the polymers (10 and 15) have been studied by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC).


Author(s):  
Abdel-Hamid I. Mourad ◽  
Omar G. Ayad ◽  
Ashfakur Rahman ◽  
Ali Hilal-Alnaqbi ◽  
Basim I. Abu-Jdayil

This work is concerned with the synthesis and characterization of Multi-Walled Carbon Nanotube (MWCNT) reinforced Kevlar KM2Plus composites with various MWCNT contents (0.2, 0.3, 0.4, 0.5, 0.6, and 0.8 wt. %), by the wet lay-up technique. These samples were experimentally investigated for their thermo-mechanical properties using Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), tensile testing and three-point bending techniques. The mechanical properties showed remarkable improvement with increasing MWCNT wt.% up to certain content. The results revealed that the addition of MWCNT fillers has no significant effect on the thermal stability of the composites.


2011 ◽  
Vol 695 ◽  
pp. 45-48
Author(s):  
Dong Wan Seo ◽  
Young Don Lim ◽  
Soon Ho Lee ◽  
Md. Monirul Islam ◽  
Hyun Mi Jin ◽  
...  

Poly(ethersulfone)s carrying pendant sulfonated imide side group. The first step in the preparation involved nitration of poly(ethersulfone) (ultrason®-S6010), with ammonium nitrate and trifluoroacetic anhydride resulting in the nitrated poly(ethersulfone) (NO2-PES). In the second step, the nitro groups on polymer were reacted with tin(II)chloride and sodium iodide as reducing agents for creating the amino poly(ethersulfone) (NH2-PES). The imide-poly(ethersulfone)s (IPES) were obtained by reaction of phthalic anhydride and the amino-poly(ethersulfone) with triethyl amine. The sulfonated imide-poly(ethersulfone)s (SIPES) were prepared by chlorosulfonic acid. The different degrees of sulfonated imide units of poly(ethersulfone) were successfully synthesized by an optimized condition. The Sulfonated imide-poly(ethersulfone)s (SIPES) were studied by FT-IR,1H-NMR spectroscopy and thermo gravimetric analysis(TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water. The ion exchange capacity (IEC) and proton conductivity of SIPES membranes were evaluated with increase of degree of sulfonation. The water uptake of synthesized SIPES membranes exhibit 30 ~ 65 % compared with 28 % of Nafion 211®. The SIPES membranes exhibit proton conductivities (25 °C) of 1.21 ~ 2.62´10-3S/cm compared with 3.37´10-3S/cm of Nafion 211®.


Sign in / Sign up

Export Citation Format

Share Document