The Addition of ABS-g-MAH on Properties of Nylon6/ABS Alloy

2012 ◽  
Vol 501 ◽  
pp. 196-201
Author(s):  
Zhen Jia Quan ◽  
Gang Chen ◽  
Yu Zhang ◽  
Yi Zhou Zhang ◽  
Hai Bo Zhang ◽  
...  

The alloy of Nylon6/Acrylonitrile-Butadiene-Styrene (ABS), with the ratio of 90/10, was prepared with ABS grafted with the maleic anhydride (ABS-g-MAH), as the compatibilizer. The mechanical tests’ results showed that the impact strength of the alloy with the compatibilizer was improved by about 146%. t can be seen from the scanning electron microscope (SEM) photographs that the compatibility was improved by the addition of ABS-g-MAH. The melting behavior and isothermal crystallization kinetics of Nylon6/ABS/ABS-g-MAH blends were investigated using DSC. The melting behavior was largely affected by the crystallization temperature and the presence of ABS-g-MAH.

2012 ◽  
Vol 501 ◽  
pp. 57-63
Author(s):  
Chao Wang ◽  
Ying Chun Li ◽  
Zhen Xing Yao

The alloy of Nylon6/Acrylonitrile-Butadiene-Styrene (ABS) with styrene-maleic anhydride (SMA) was prepared by melt blending as the compatilizer. Mechanical characteristics, dynamic mechanical analysis (DMA) and fracture appearances were determined. It was found that the impact and tensile strength firstly increased and then decreased along with the increase of the SMA content. The properties reached maximum values when the content of SMA was 2%. The results of DMA and scanning electron microscope (SEM) indicated that the addition of SMA can effectively enhance the compatibility of Nylon6 and ABS.


2014 ◽  
Vol 703 ◽  
pp. 45-50
Author(s):  
Chao Wang ◽  
Ying Chun Li ◽  
Guo Sheng Hu

The blends of Nylon 6/Acrylonitrile-Butadiene-Styrene (ABS) with styrene-maleic anhydride (SMA) was prepared by melt blending as the compatilizer. Mechanical properties, dynamic mechanical analysis (DMA) and fracture appearances were determined. It was found that the impact and tensile strength firstly increased and then decreased along with the increase of the SMA content. The properties reached maximum values when the content of SMA was 1.5%. The results of DMA and scanning electron microscope (SEM) indicated that the addition of SMA can effectively enhance the compatibility of Nylon 6 and ABS. Key words: Nylon 6, ABS, SMA, blends, modification


2020 ◽  
Vol 833 ◽  
pp. 8-12
Author(s):  
Salina Budin ◽  
Koay Mei Hyie ◽  
Hamid Yussof ◽  
Aulia Ishak ◽  
Rosnani Ginting

Acrylonitrile-butadiene-styrene (ABS) is one of the most widely used plastic. The application of ABS increases rapidly in industries recently. The drawback of the increasing demand of ABS is the increment of ABS waste. Huge increment in ABS waste has led to the increasing of environmental pollution. The demand in green technology and sustainability of resources has urged the need of recycling of ABS waste. However, the mechanical properties of the recycled ABS are deteriorated. Hence, this work aims to study the mechanical properties of blend virgin and recycled ABS. The first sample started with 100wt% of virgin ABS. While the second to eleventh samples was a mixing of virgin and recycled ABS at 10wt% incremental recycled ABS. The last sample was prepared using 100wt% of recycled ABS. The results show that the tensile strength of 100wt% of recycled ABS is slightly decreased as compared to 100wt% virgin ABS. Similar trend was observed on traverse rupture strength (TRS) when the TRS for 100wt% of recycled ABS is lower by 8% when compared to 100wt% of virgin ABS. The most significant change is observed on the impact strength. The impact strength for 100wt% of recycled ABS is substantially dropped by 86% as compared to 100wt% of virgin ABS.


2013 ◽  
Vol 750-752 ◽  
pp. 2026-2030
Author(s):  
Shao Hui Wang

A new hyper-dispersant with Silicon radicals as anchoring group and poly (butyl acrylate) as solvatable chain was synthesized and its effect on the properties of PE/Talc composites was investigated in this paper. Fourier transmission infrared spectroscopy (FT-IR) results show that the modifier react on the Talc powders surface and the modified Talc powders particles. The impact strength of PE/Talc composites increased about 32.5% compared with that of PE/Talc (filled with same non-modified fraction) respectively. Based on surface analysis by scanning electron microscope (SEM), the Talc powders particles buried well in PE matrix when Talc powders was coated with the new modifier.


2015 ◽  
Vol 659 ◽  
pp. 463-467
Author(s):  
Sirirat Wacharawichanant ◽  
Parida Amorncharoen ◽  
Ratiwan Wannasirichoke

The effects of polypropylene-graft-maleic anhydride (PP-g-MA) compatibilizers on the morphology and mechanical properties of polyoxymethylene (POM)/acrylonitrile-butadiene-styrene (ABS) blends were investigated. Two types of compatibilizers, PP-g-MA with maleic anhydride 0.50 wt% (PP-g-MA1) and PP-g-MA with maleic anhydride 1.31 wt% (PP-g-MA2) were used to study the interfacial adhesion of POM and ABS. POM/ABS blends with and without PP-g-MA compatibilizer were prepared by an internal mixer and molded by compression molding. Scanning electron microscope (SEM) was used to investigate the morphology of ABS phase in POM matrix. The results found that POM/ABS blends clearly demonstrated a two phase separation of dispersed ABS phase and the POM matrix phase, and ABS phase dispersed as spherical domains in POM matrix in a range of ABS 10-30 wt% and the blends containing ABS more than 30 wt% showed the elongated structure of ABS phase. The addition of PP-g-MA could improve the interfacial adhesion of POM/ABS blends due to the domain size of ABS phase decreased after adding PP-g-MA. The mechanical properties showed that the impact strength of POM/ABS blends decreased in a range of 10-20 wt% and did not change after 20 wt%. The addition of PP-g-MA did not change the impact strength of POM/ABS blends. The Young’s modulus of POM/ABS blends increased up to 30 wt% of ABS and then decreased. While the blends showed the decrease of tensile strength and percent strain at break with increasing ABS content. The addition of PP-g-MA increased the tensile strength of POM/ABS blends in a range of 30-40 wt% of ABS. The above results indicated that the morphology had an effect on the mechanical properties of polymer blends.


Proceedings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 61 ◽  
Author(s):  
Francisco Fraga-López ◽  
Eugenio Rodríguez-Núñez ◽  
José Manuel Martínez-Ageitos ◽  
Lucia López Arias ◽  
Uxío Valcárcel-Rubinos

In this study, we investigated the curing kinetics of the epoxy system formed by the epoxy resin Diglycidyl ether of bisphenol A, Isophorone diamine hardener (IPD), and the thermoplastic modification agent Acrylonitrile butadiene styrene or ABS. The introduction of a third component, in this case ABS, has been carried out to improve the application of this system in waterproofing and use of paints, as well as improving resistance to the impact of this type of systems. In addition, obtaining kinetic and respective parameters will allow us to identify the properties and gain knowledge of possible applications in the industry. In particular, it is intended to reach a kinetic equation that is capable of describing variation in the reaction rate according to the degree of curing for the entire range of conversions, starting from the model proposed by Kamal et al.


2012 ◽  
Vol 455-456 ◽  
pp. 845-850 ◽  
Author(s):  
Xiao Juan Bai ◽  
Zhe Wu ◽  
Nan Feng

Acrylonitrile-Butadiene-Styrene (ABS)/CaCO3 composites were reprocessed under normal conditions. The effects of reprocessing on the degradation of ABS were investigated by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The mechanical properties of the reprocessed materials were measured. In this paper, a method to evaluate the degradation of ABS in ABS/CaCO3 composites by FTIR was described. The results show that within the range of the reprocessing cycles studied, as the number of reprocessing cycles increased, the impact strength of composite was significantly reduced if the content of CaCO3 is lower than 10%, due to the degradation of rubber phase. However, the impact strength was almost unchanged when the content of CaCO3 was higher than 15%.


2015 ◽  
Vol 1119 ◽  
pp. 263-267 ◽  
Author(s):  
M.T.M. Lufti ◽  
D.L. Majid ◽  
A.R.M. Faizal ◽  
Mazlan Norkhairunnisa

Mechanical properties of formulated biocomposite between acrylonitrile-butadiene-styrene (ABS) polymer and kenaf whole stem (KWS) fibre have been investigated. This work has been done by alternating the KWSfibre loading with aim to propose the best formulation for preparing ABS/kenafbiocompositeby referring to its mechanical properties with the addition of processing aid.KWS fiber loading up from 10% to 50% are considered in this work and evaluated. It was found that by increasing the KWS fibre loading, the Young’s and flexural modulus of the ABS/kenafbiocomposite was subsequently increased too. Interestingly, the biocomposite strength decreased considerably while the impact strength drops significantly. ABS/kenafbiocomposite with 50% KWSfibre loading (C-50/50) has showed better performance compared to other formulation. However, a higher fibre loading was not considered presently as difficulties during compounding process are to be anticipated.


2021 ◽  
pp. 095400832110092
Author(s):  
Wei Fang ◽  
Xiaodong Fan ◽  
Ruilong Li ◽  
Lin Hu ◽  
Tao Zhou

Polyoxymethylene/thermoplastic polyamide elastomer (POM/TPAE) blends were prepared through melt extrusion in an attempt to improve the toughness and electrical properties of POM. The TPAE used in the study had the permanent antistatic effect, and its brand was MV2080. Acrylonitrile-butadiene-styrene copolymer grafted maleic anhydride (ABS-g-MAH) was added while preparing the POM/TPAE blends to improve the compatibility between TPAE and POM. The effects of TPAE and ABS-g-MAH on the morphologies, melting crystallization, dynamic mechanical analysis, surface resistivity and mechanical properties were examined in detail with various techniques. It was found that after adding 15 phr MV2080 as the modifier, the distribution of MV2080 in the blends was presented as many continuous long strips, which can be called “antistatic networks.” When using ABS-g-MAH as a compatibilizer, the surface resistivity of the samples 5#, 6#, and 7# which all containing 15 phr MV2080 with the best antistatic properties reached 107 Ω, and the impact strength of the above samples was all increased by more than 66%.


Sign in / Sign up

Export Citation Format

Share Document