Performance Evaluation of Cryogenically Treated Worn CBN Insert by Turning Process

2012 ◽  
Vol 504-506 ◽  
pp. 1323-1328 ◽  
Author(s):  
S. Thamizhmanii ◽  
K. Rajendran ◽  
Mohideen Rasool ◽  
Sulaiman Hassan

Machining of materials is to produce desired shape and size with smooth surfaces for the performance. Machining is carried out using various cutting tools starting high speed steel to recently developed tools like CBN and PCBN etc. These tools are used to machine difficult to cut materials like high strength alloy steels, stainless steel, Inconel 718, Titanium etc. The inserts used are thrown out or no longer required for finish machining. It can be used for rough machining where smooth surface is not primary important and subjected to subsequent machining using fresh inserts. The used inserts can be used subsequently by subjecting them cryogenic treatment at – 196◦ C in a closed chamber. It is longer process for more than 30 hours in a liquid nitrogen chamber. This treatment gives additional strength to cutting inserts to improve the cutting ability and wear resistance. The components used in high strength applications like an aerospace, automobile industries are treated with cryogenic process to improve wear strength. The operating parameters are cutting velocity, feed rate and constant depth of cut. In this research, CBN inserts after turning for 750 mm length was cryogenically treated and again used with same operating parameters as previous machining conditions. Each inserts were measured for flank wear by Scanning Electron Microscope (SEM) after treatment and re-used with same turning conditions as before. Performances of all inserts used were producing the same results or results near to same. The treated inserts were acting as fresh cutting edges. The results showed that cryogenically processed CBN inserts performed very close to previous results.

The small and medium scale industry in drilling and cutting sector widely use cutting tools made by High Speed Steel (HSS). The improvement of lifetime of HSS drill bits helps these establishments to achieve product economy. The improvement in the performance and service lifetime of high-speed steel (HSS) twisted drill bits are studied by depositing Titanium dioxide (TiO2 ) nano-coatings using reactive dc magnetron sputtering Method. Pure titanium (99.99%) metal is used as target material for making nano-coatings in oxygen atmosphere. X-ray diffraction studies indicated change of phase of annealed samples compared to as-deposited coatings. X-ray reflection (XRR) measurements estimated nanocoating thickness on the HSS drill bit around 100nm. The lifetime of TiO2 nano-coated, and cryogenically treated nano-coated tools significantly improved compared to uncoated (bare) HSS drill bit. The tool life has been enhanced by about 16% when TiO2 nano-coatings were made on HSS drill bits. Further lifetime enhancement of 10% was observed when the nanocoated drill bit is given cryogenic treatment in liquid nitrogen. SEM images and EDS profiles are reported. The minimum surface roughness measured as 7.296x10-6m for TiO2 coated and cryo-treated HSS drill tool.


2015 ◽  
Vol 761 ◽  
pp. 262-266
Author(s):  
A. Siti Sarah ◽  
A.B. Mohd Hadzley ◽  
Raja Izamshah ◽  
Abu Abdullah

This paper aims to study the tool life of coated and uncoated high speed steel (HSS) when machining LM6 aluminium. The experiment was carried out in dry condition with spindle speed of 5000 rpm and 6000 rpm, and feed rate of 90 mm/min and 120 mm/min. Axial and radial depth of cut remain constant at 0.5 mm and 1.0 mm, respectively during the experiment. Throughout the experiments, coated HSS showed higher tool life as compared to uncoated HSS due to the coating layer of titanium aluminium nitride (TiAlN) provides protection from rapid wear during machining. For both cutting tools, the optimum cutting parameter was recorded at 5000 rpm spindle speed, 90 mm/min feed rate, 0.5 mm axial depth of cut and 1.0 mm radial depth of cut. Some evidence of built up edge (BUE) formation were observed at most of cutting tools, showing the dominant wear mechanisms appear to be adhesive wear.


2007 ◽  
Vol 359-360 ◽  
pp. 118-122
Author(s):  
Xi Peng Xu ◽  
Cun Ji Du

The present study was undertaken to compare the consumed power in surface grinding of three different materials with a vitrified CBN wheel. High speed steel, stainless steel, and natural granite were used as the workpiece materials in the experiments. Two different depth of cut and workpiece velocity were combined to give different material removal rates. The spindle power was in-process monitored in each pass of grinding. The radius wear of the grinding wheel was also measured and the morphologies of CBN grains were observed during the grinding of high speed steel and granite. The power for the grinding of high speed steel was found to be the lowest under any operating parameters. For other two materials, the results became complex. At shallower depth of cut, the power for the grinding of stainless steel was higher in most cases. However, the power for the grinding of granite was higher under larger depth of cut. It was found that the grinding wheel failed much earlier in the grinding of granite as compared with the grinding of high speed steel.


Author(s):  
Lakhwinder Pal Singh ◽  
Jagtar Singh

In the field of mechanical engineering, engineers are always looking for ways to improve the properties of materials. Cryogenic treatment of tooling steels is a proven technology to increase wear resistance and extend intervals between component replacements. The main idea of this paper is to apply Taguchi method to optimize cutting parameters in turning operation using cryogenic treated (CT) and untreated (UT) high speed steel (HSS) tools, so that the scope of cryogenic treatment on HSS tool material may be presented for the benefit of medium and small scale industry using HSS tools for cutting operation. Taguchi L25 orthogonal array is employed to study the performance characteristics in turning operations of AISI 1020 steel bars using CT and UT HSS tools. The microstructure has been found more refined and uniformly distributed after cryogenic treatment of HSS tool. It has been observed that optimum machining parameters in both the cases (CT HSS and UT HSS tools) are higher cutting speed (49.9 to 75.7 m/min.), lower feed rate (0.15 mm/rev.), medium depth of cut (0.40 mm). Analysis of variance (ANOVA) indicates that the cutting speed is most significant parameter followed by feed rate in case of CT HSS tool and depth of cut in case of UT HSS tool.


Alloy Digest ◽  
1981 ◽  
Vol 30 (10) ◽  

Abstract AISI Type T5 is a tungsten high-speed steel to which cobalt (8.9%) is added to provide high and unusual red hardness. It is particularly well adapted for heavy-duty cutting and high-production cutting tools. Because of its high red hardness, a cutting edge can be maintained under conditions of speed, feed and depth of cut that would not be possible with ordinary high-speed steels. Typical applications of AISI Type T5 are lathe and planer tools, reamers, milling cutters and twist drills for heavy-duty cutting. This datasheet provides information on composition, physical properties, and hardness. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: TS-389. Producer or source: Tool steel mills.


2019 ◽  
Vol 13 (3) ◽  
pp. 213-217
Author(s):  
Sanja Šolić ◽  
Zdravko Schauperl ◽  
Vlado Tropša

High speed steel (HSS) is a very important industrial tool material and has been constantly improved for different wear resistance applications and cutting tools, i.e. drills, milling cutters, hobs and for the cutting tools in which the economical cutting speed is too low for choosing the carbide tools. The properties of HSS depend significantly on the parameters of the conducted heat treatment. In this paper, the influence of deep cryogenic treatment in combination with nitriding of metallurgical powder metallurgy HSS on the wear resistance was measured. Additionally, the cutting performance in a single point cutting tool machinability test at the configuration of the dry low-speed turning of steel was investigated. The results showed that deep cryogenic treatment itself, and in combination with nitriding, resulted in the reduction of the wear rate. The results of the single point cutting tool machinability test showed that deep cryogenic treated and nitrided HSS inserts performed worse than the classically heat-treated inserts and deep cryogenic treated HSS inserts exhibited approximately the same flank wear as the nitrided ones.


2016 ◽  
Vol 686 ◽  
pp. 240-245
Author(s):  
Tomáš Vopát ◽  
Jozef Peterka ◽  
Vladimír Šimna ◽  
Ivan Buranský

The article deals with the tool life of ball nose end mills and surface roughness of steel C45 depending on up-copying and down-copying. The cemented carbide and high speed steel was used as tool material. Furthermore, the new and sharpened cutting tools were also compared. In the experiment, the cutting speed, feed rate, axial and radial depth of cut were not changed. The results show different achieved surface roughness of machined material C45 and tool life of ball nose end mills depending on the copy milling strategy for various tool materials.


2016 ◽  
Vol 693 ◽  
pp. 884-891
Author(s):  
Jun Ji Li ◽  
Xian Guo Yan ◽  
Hai Zhen Zhang ◽  
Dong Yang Li

In the cryogenic treatments process, the temperature distribution in a work-piece of high speed steel (HSS) is crucial to the effectiveness of the treatment. However, determination of temperature field during the cryogenic process is difficult. In this study, the temperature distribution in W9Mo3Cr4V HSS bars with a diameter of 24mm during cryogenic treatment was investigated using thermocouples so that obtained the optimization of process parameters and improve the high speed steel tool life. Temperatures at different nodes and their variations with time were measured and numerically studied using Pro/E, Workbench and Fluent software. Results from both the simulation study and experimental measurement are in good agreement, indicating that the temperature distribution inside a work-piece during cryogenic treatment can be determined using a combination of simple tests and numerical simulation, and finally provided a theoretical guidance for making the reasonable cryogenic treatment procedure.


Alloy Digest ◽  
1988 ◽  
Vol 37 (5) ◽  

Abstract UNS No. T11310 is the high vanadium type of molybdenum high-speed steel. It is a deep-hardening steel and offers high cutting ability and excellent finishing properties. It is a general-purpose steel for cutting tools and is used in such applications as taps, lathe tools and reamers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating and machining. Filing Code: TS-490. Producer or source: Tool steel mills.


Alloy Digest ◽  
1965 ◽  
Vol 14 (2) ◽  

Abstract Cyclops BHT is a low-alloy martensitic high-speed steel of the molybdenum type recommended for high strength, high load structural components designed for elevated temperature service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-173. Producer or source: Cyclops Corporation.


Sign in / Sign up

Export Citation Format

Share Document