Mechanical Behavior of Jute Fiber-Cement Based Composites

2012 ◽  
Vol 517 ◽  
pp. 469-476 ◽  
Author(s):  
L.V. Carvalho ◽  
Ana Catarina J. Evangelista ◽  
Romildo Dias Toledo Filho

This study presents the results of the mechanical characterization of short jute fiber cement mortar composites. Compression, direct tension and bending tests were performed to determine the first crack, post-peak strength, toughness and fracture processes of the composites. To ensure the composite durability, the ordinary Portland cement matrix was modified by adding metakaolin to consume the calcium hydroxide generated during Portland cement hydration. The composites were produced using reinforcement ratios of 2% and 3% of short jute fiber (25 mm) in a self-compacting matrix of maximum packing. Jute plant is easy to grow in the Amazon region of Brazil where arrived in early 30s coming from Asia and represents the main economic activity of the Amazon riverine population. The tensile behavior of this high performance natural reinforcement was determined in the present study using 30 mm long fiber. Composites with high toughness, strength and multiple cracking processes under bending load were obtained when volume fractions equal to 3% were used as reinforcement.

Author(s):  
Fernando Benedicto Mainier ◽  
Viktor Labuto Fragoso Sereno Ramos ◽  
Claudio Fernando Mahler

This study presents the results of the mechanical characterization of cement composites reinforced with short fibers of jute, sisal and curauá. Tests of direct tension in flexion and traction, after wetting and drying cycle (5 cycles) to determine the first crack were performed to determine the first crack, the tension and post-peak toughness and strengh of the composites. To ensure the the composite durability, the ordinary Portland cement matrix was modified by adding metakaolin, to consume the calcium hydroxide generated during Portland cement hydration. The composites were produced using short fibers of jute, sisal and curauá (50 mm) at levels of 2%, 4% and 6% of sisal and white curauá, and 3%, 6% and 9% to jute. The fibers of jute and white curauá employed in this study came from the Brazilian Amazon, while the sisal came from the Brazilian Northeast.This fibers have great economic importance in the producing region. Composites with high toughness, strength and multiple cracking processes under bending load were obtained when volume fractions equal to 3% of jute were used as reinforcement and when 6% of sisal and 4% of white curauá were used as reinforcement.


2020 ◽  
Vol 4 (3) ◽  
pp. 101 ◽  
Author(s):  
David Plappert ◽  
Georg C. Ganzenmüller ◽  
Michael May ◽  
Samuel Beisel

High-performance composites based on basalt fibers are becoming increasingly available. However, in comparison to traditional composites containing glass or carbon fibers, their mechanical properties are currently less well known. In particular, this is the case for laminates consisting of unidirectional plies of continuous basalt fibers in an epoxy polymer matrix. Here, we report a full quasi-static characterization of the properties of such a material. To this end, we investigate tension, compression, and shear specimens, cut from quality autoclave-cured basalt composites. Our findings indicate that, in terms of strength and stiffness, unidirectional basalt fiber composites are comparable to, or better than epoxy composites made from E-glass fibers. At the same time, basalt fiber composites combine low manufacturing costs with good recycling properties and are therefore well suited to a number of engineering applications.


Author(s):  
Weizhao Zhang ◽  
Zixuan Zhang ◽  
Jie Lu ◽  
Q. Jane Wang ◽  
Xuming Su ◽  
...  

Carbon fiber composites have received growing attention because of their high performance. One economic method to manufacturing the composite parts is the sequence of forming followed by the compression molding process. In this sequence, the preforming procedure forms the prepreg, which is the composite with the uncured resin, to the product geometry while the molding process cures the resin. Slip between different prepreg layers is observed in the preforming step and this paper reports a method to characterize the properties of the interaction between different prepreg layers, which is critical to predictive modeling and design optimization. An experimental setup was established to evaluate the interactions at various industrial production conditions. The experimental results were analyzed for an in-depth understanding about how the temperature, the relative sliding speed, and the fiber orientation affect the tangential interaction between two prepreg layers. The interaction factors measured from these experiments will be implemented in the computational preforming program.


1984 ◽  
Vol 51 (01) ◽  
pp. 016-021 ◽  
Author(s):  
S Birken ◽  
G Agosto ◽  
B Lahiri ◽  
R Canfield

SummaryIn order to investigate the early release of NH2-terminal plasmic fragments from the Bβ chain of fibrinogen, substantial quantities of Bβ 1-42 and Bβ 1-21 are required as immunogens, as radioimmunoassay standards and for infusion into human volunteers to determine the half-lives of these peptides. Towards this end methods that employ selective proteolytic cleavage of these fragments from fibrinogen have been developed. Both the N-DSK fragment, produced by CNBr cleavage of fibrinogen, and Bβ 1-118 were employed as substrates for plasmin with the finding of higher yields from N-DSK. Bβ 1-42 and Bβ 1-21 were purified by gel filtration and ion-exchange chromatography on SP-Sephadex using volatile buffers. When the purified preparation of Bβ 1-42 was chromatographed on reverse-phase high performance liquid chromatography, two peaks of identical amino acid composition were separated, presumably due either to pyroglutamate or to amide differences.


1992 ◽  
Vol 57 (10) ◽  
pp. 2151-2156 ◽  
Author(s):  
Peter Chabreček ◽  
Ladislav Šoltés ◽  
Hynek Hradec ◽  
Jiří Filip ◽  
Eduard Orviský

Two methods for the preparation of high molecular weight [3H]hyaluronic acid were investigated. In the first one, hydrogen atoms in the molecule were replaced by tritium. This isotopic substitution was performed in aqueous solution using Pd/CaCO3 as the catalyst. In the second method, the high molecular weight hyaluronic acid was alkylated with [3H]methyl bromide in liquid ammonia at a temperature of -33.5 °C. High-performance gel permeation chromatographic separation method was used for the isolation and characterization of the high molecular weight [3H]hyaluronic acid. Molecular weight parameters for the labelled biopolymers were Mw = 128 kDa, Mw/Mn = 1.88 (first method) and Mw = 268 kDa, Mw/Mn = 1.55 (second method). The high molecular weight [3H]hyaluronic acid having Mw = 268 kDa was degraded further by specific hyaluronidase. Products of the enzymatic depolymerization were observed to be identical for both, labelled and cold biopolymer. This finding indicates that the described labelling procedure using [3H]methyl bromide does not induce any major structural rearrangements in the molecule.


Sign in / Sign up

Export Citation Format

Share Document