Effect of Temperature of Synthesis on X-Ray, Infrared Spectroscopic Study and Magnetic Properties of Magnesium Zinc Ferrites

2013 ◽  
Vol 547 ◽  
pp. 57-69 ◽  
Author(s):  
Sujata. S. Khot ◽  
Neelam S. Shinde ◽  
Bhimrao P. Ladgaonkar ◽  
Bharat B. Kale ◽  
Shrikant C. Watawe

Some physical properties (such as lattice parameter, curie temperature, ac susceptibility) of Mg1-xZnxFe2O4 (where x = 0.3,0.4,0.5,0.6) ferrites have been studied. Magnesium Zinc Ferrites was synthesized by oxalate co-precipitation method at different synthesis temperature and characterized by X-ray diffraction and far IR absorption techniques, scanning Electron microscopy .The lattice parameter were computed. The X-ray diffraction studies reveal the formations of single phase cubic spinel structure.IR absorption bands are observed around 600 cm-1 and 400 cm-1 on the tetrahedral and octahedral sites respectively. Magnetization parameters such as saturation magnetization, and magnetic moment were calculated and the results are discussed with the help of the existing theories. Saturation magnetization was found to be in the range 2 emu/gm to 8.28 emu/gm when the samples were synthesized below 100°C. The variation of A.C. susceptibility with temperature shows the existence of super paramagnetic nature. The Curie temperature was determined from the measurement of the susceptibility verses temperature. The SEM micrograph shows the uniform distribution of the particles, the average size was estimated to be 0. 350 µm.

2016 ◽  
Vol 30 (32n33) ◽  
pp. 1650347
Author(s):  
Amarjeet ◽  
Vinod Kumar

[Formula: see text] ([Formula: see text] = 0.1, 0.3 and 0.5) nanoparticles were prepared by chemical co-precipitation method. The developed nanoparticles were characterized for structural properties by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Peak position in the X-ray diffraction pattern confirmed the single spinel phase of the developed particles. Infrared (IR) spectroscopy in mid-IR range showed the presence of characteristic absorption bands corresponding to octahedral and tetrahedral bonds in the spinel structure of prepared samples. Thermo-gravimetric analysis (TGA) measurements showed a considerable weight loss in the developed samples above 700[Formula: see text]C. Frequency dependence of the electrical properties of the developed material pellets was studied in the frequency range of 1 kHz–5 MHz. Temperature dependence of the dielectric constant of [Formula: see text] was studied at different temperatures, i.e. at 425, 450 and 475 K, in the frequency range of 1 kHz–5 MHz. It was found that the electrical conductivity decreases with increasing Cu[Formula: see text] ion content while it increases with the increase in temperature.


1970 ◽  
Vol 35 (2) ◽  
pp. 229-235 ◽  
Author(s):  
Saroaut Noor ◽  
SS Sikder ◽  
M Samir Ullah ◽  
MA Hakim ◽  
Shireen Akhter

Polycrystalline samples of Cd substituted cobalt ferrites with composition Co1-xCdxFe2O4 (x = 0.0- 0.6 in steps of 0.1) were prepared by double sintering ceramic method. The samples were sintered at 1050°C for 3 hours. X-ray diffraction pattern of the samples showed single phase cubic spinel structure. It was found that the lattice parameter increases linearly with increasing Cd content following Vegard’s law. The apparent density and X-ray density exhibited similar behavior. The Curie temperature Tc has been determined from the temperature dependence of permeability. It was found that the Curie temperature continuously decreased with increasing Cd content and is attributed to the weakening of JAB exchange interaction. The initial permeability, μ' increases with increasing Cd content up to x = 0.6 and then decreases. Key words: Co-Cd ferrite; Lattice parameter; Permeability DOI: http://dx.doi.org/10.3329/jbas.v35i2.9429 JBAS 2011; 35(2): 229-235


2018 ◽  
Vol 71 (11) ◽  
pp. 914
Author(s):  
Yanfang Xia ◽  
Min Liu ◽  
Duxin Li

Co0.76Cu0.74[Fe(CN)6]·7.5H2O was prepared as a powder by a chemical co-precipitation method. The powder X-ray diffraction patterns were indexed to the typical face-centred cubic structure with the lattice parameter a 10.55(2) Å. The temperature dependence of the χ−1 curve obeys the Curie–Weiss law (χ = C/(T – θ)) in the temperature range of 180–300 K. According to Curie–Weiss law, the calculated θ value is −54.82 K. In the paramagnetic state at 300 K, the effective magnetic moment (μeff = (8χT)1/2) is 3.58 μB per formula unit. The calculated theoretical effective magnetic moment is 4.06 μB. The magnetic field cooling measurements under a 200 Oe applied magnetic field show that the saturation magnetization value at 2 K of the complex Co0.76Cu0.74[Fe(CN)6]·7.5H2O is 1.528 emu g−1.


2015 ◽  
Vol 29 (24) ◽  
pp. 1550183 ◽  
Author(s):  
Atul Thakur ◽  
Parul Sharma ◽  
Preeti Thakur ◽  
Amit Sharma ◽  
Anil Thakur ◽  
...  

A nanoferrite series of composition [Formula: see text] with [Formula: see text] and 0.4 has been prepared by a hydrothermal method. X-ray diffraction (XRD) confirmed the formation of cubic spinel structure. The average crystallite size is found to be in the range of 28–48 nm. The lattice parameter is found to increase linearly with an increase in [Formula: see text] content. Field Emission Scanning Electron Microscopy micrographs indicate that the samples have almost uniform sized crystallites with uniform grain growth. Fourier Transform Infrared (FTIR) Spectroscopy studies showed two absorption bands close to 603 and [Formula: see text] for the tetrahedral and octahedral sites respectively. Saturation magnetization attained a maximum value of 34.15 emu/g at [Formula: see text] and then decreases for higher concentrations of [Formula: see text] ions. Activation energy for compositions [Formula: see text] and [Formula: see text] are found to be 0.371 eV and 0.471 eV, respectively. For composition [Formula: see text], maximum value of observed density, minimum porosity, maximum value of saturation magnetization, maximum initial permeability and minimum value of coercivity is obtained. DC resistivity is found to be of the order of [Formula: see text]. The obtained results have been explained based on possible mechanisms, models and theories.


Clay Minerals ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 53-61 ◽  
Author(s):  
H. C. B. Hansen ◽  
C. Bender Koch

AbstractStichtite is the layered Mg-Cr(III) hydroxide carbonate of the pyroaurite group. The possibility of describing Cr(III) short range order (SRO) in stichtite by use of ion chromatography of the Cr(III)-hydroxo species following acid dissolution of the compound is described. Two synthetic stichtites of similar composition (average Mg5.73Cr(III)2.27(OH)15.93(O)0.07(CO3)1.10·xH2O) prepared in the absence or presence of hydroxy-bridged Cr(III) dimers and a sample from Dundas, Tasmania, Mg6.29Ni(II)0.02Cr(III)0.90Al0.65Fe(III)0.15(OH)15.26(OH2)0.74(CO3)1.23·xH2O have been examined. Ion chromatography showed the highest degree of SRO for the Dundas stichtite. For the synthetic stichtites the sample synthesized from Cr(III) dimers had the highest SRO. No information on cation ordering could be extracted from powder X-ray diffraction data. Visible spectroscopy indicates that for constant Mg:Cr(III) ratio the crystal field splitting increases with increasing SRO. Two different OH-stretching IR absorption bands (3585 and 3472 cm−1) are assigned to OH coordinated to 3Mg and OH coordinated to 2MgCr or Mg2Cr, respectively.


2010 ◽  
Vol 8 (2) ◽  
pp. 419-425 ◽  
Author(s):  
Surendra More ◽  
Ram Kadam ◽  
Ankush Kadam ◽  
Dhanraj Mane ◽  
Govind Bichile

AbstractA series of CoAlxCrxFe2−2xO4 systems (x = 0.1 to 0.5 in steps of x = 0.1) spinel ferrites have been synthesized successfully using wet chemical co-precipitation technique. The samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and magnetization measurements. The powder XRD patterns confirm the single phase spinel structure for the materials synthesized. X -ray diffraction measurements were performed to yield the lattice constant as function of the amount x corresponding to Al-Cr substitution. Lattice parameters, X-ray density, bulk density and particle size decrease whereas porosity increases with the increase in Al-Cr content, ‘x’. Infrared studies show two absorption bands at about 400 cm−1 and 600 cm−1 for octahedral and tetrahedral sites, respectively. Saturation magnetization decreases with the increase in Al-Cr content x. AC magnetic susceptibility measurements were carried out as a function of temperature to measure the Curie temperature, which was found to decrease with Al-Cr content x. The decrease of Curie temperature has been explained by A-B interaction.


2013 ◽  
Vol 454 ◽  
pp. 288-291 ◽  
Author(s):  
Jian An Liu ◽  
Mei Mei Zhang ◽  
Xue Na Yang

A novel porous ferromagnetic glass-ceramic has been synthesized with glassceramic and hydroxyapatite for hyperthermia application. The glassceramic was obtained from a melt derived glass, and the hydroxyapatite was prepared via precipitation method with biological template (YEAST). Both components of such a mixture were sintered at 1000 °C for 1 hour in graphite. The sample was characterized by x-ray diffraction, scanning electron microscopy and magnetic measurements. This material exhibited magnetic behavior and porosity. The results show that porous ferromagnetic glass-ceramic, which saturation magnetization (Ms) of about 25 A·m2/kg and diameter of porous 30-50μm, was obtained.


2016 ◽  
Vol 2 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Rakesh M. Shedam ◽  
Ashok B. Gadkari ◽  
Shridhar N Mathad ◽  
Mahadev R. Shedam

This report presents the synthesis of cadmium ferrite (CdFe2O4) by Oxalate co-precipitation and its subsequent characterization by using X-ray diffraction (XRD) and Fourier transform Infrared spectroscopy (FTIR) techniques. XRD results confirm the single cubic spinel phase formation with lattice parameter 8.7561Ao. An infrared spectroscopy study shows the presence of main two absorption bands indicating the presence of tetrahedral and octahedral group complexes, respectively, within the spinel lattice. We also report strain, hopping length (LA and LB) and dislocation density  of ferrite sample.


2021 ◽  
Author(s):  
Rashed A. Islam

This chapter explains the effect of compositional modification on the magnetoelectric coefficient in sintered piezoelectric – magnetostrictive composites. It was found that 15 at% doping of Pb(Zn1/3Nb2/3)O3 [PZN] in Pb(Zr0.52Ti0.48)O3 [PZT] enhances the piezoelectric and magnetoelectric properties of a PZT – 20 at% Ni0.8Zn0.2Fe2O4 [NZF] composite. The effect of doping on the ferromagnetic phase was also investigated. With increases in Zn concentration, it was found that the coercive field and Curie temperature of Ni(1-x)ZnxFe2O4 [NZF] decreases, while its saturation magnetization has a maxima at 30 mole% Zn. X-ray diffraction revealed that the lattice constant of NZF increases from 8.32 Å for 0 at% Zn to 8.39 Å for 50 at% Zn. The magnetoelectric coefficient was found to have a maxima of 144 mV/cm.Oe at 30 at% Zn. To understand better, the effect of 40% (by mole) Zn substitution on structural, piezoelectric, ferromagnetic and magnetoelectric properties of Pb(Zr0.52Ti0.48)O3 - CoFe2O4 (PZT - CFO) sintered composite is also explained. X-ray diffraction of Co0.6Zn0.4Fe2O4 (CZF) showed the shift in almost all diffraction peaks to lower diffraction angle confirming the increase in lattice parameter in all three direction from 8.378 (for CFO) to 8.395 Å for (Co,Zn)Fe2O4 (CZF). SEM and TEM results showed defect structure (cleavage, twins, strain fields) in the CZF particle, which is a clear indication of misfit strain developed due to lattice expansion. Magnetic properties measured over temperature (5 K – 1000 K) showed increased magnetization but lower magnetic Curie temperature in PZT - CZF particle. Magnetoelectric coefficient measured as function of ferrite concentration showed an increase of more than 100% after doping the CFO phase with 40% Zn. This enhancement can be attributed to increase in the lattice strain, magnetic permeability and decrease in coercivity.


2020 ◽  
Vol 11 (1) ◽  
pp. 8034-8042

The incorporation of magnesium (Mg) in tricalcium phosphate (TCP) was prepared through a precipitation method followed by calcination at 850 °C in air. Calcium hydroxide, (Ca(OH)2), phosphoric acid, (H3PO4), and magnesium chloride (MgCl2.6H2O) with a Ca/P ratio of 1.5, were mixed as the precursor materials. The concentration of added Mg was varied with respect to calcium (Ca) precursor molarity as such Mg/(Ca +Mg) molar ratio was 0.05, 0.10, and 0.15, while the (Ca+Mg)/P ratio was maintained at 1.50 throughout the experiment. The influence of Mg-doped TCP on phase composition, chemical structure, and a functional group at different weight percentages were accomplished through X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier Transform Infrared Spectroscopy (FTIR) analyses. Based in the results of this research, the presence of magnesium led to the formation of Mg-doped calcium-deficient apatite (MgCDA) at 80°C and Mg-doped β-TCP at 850°C; the incorporation of Mg into the TCP phase causing an expansion of the lattice and increase in the lattice parameter. This result could be considered rather unusual.


Sign in / Sign up

Export Citation Format

Share Document