magnetostrictive composites
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Zhenjun Yang ◽  
Zhenjin Wang ◽  
Kenya Nakajima ◽  
Daiki Neyama ◽  
Fumio Narita

2021 ◽  
Author(s):  
Rashed A. Islam

This chapter explains the effect of compositional modification on the magnetoelectric coefficient in sintered piezoelectric – magnetostrictive composites. It was found that 15 at% doping of Pb(Zn1/3Nb2/3)O3 [PZN] in Pb(Zr0.52Ti0.48)O3 [PZT] enhances the piezoelectric and magnetoelectric properties of a PZT – 20 at% Ni0.8Zn0.2Fe2O4 [NZF] composite. The effect of doping on the ferromagnetic phase was also investigated. With increases in Zn concentration, it was found that the coercive field and Curie temperature of Ni(1-x)ZnxFe2O4 [NZF] decreases, while its saturation magnetization has a maxima at 30 mole% Zn. X-ray diffraction revealed that the lattice constant of NZF increases from 8.32 Å for 0 at% Zn to 8.39 Å for 50 at% Zn. The magnetoelectric coefficient was found to have a maxima of 144 mV/cm.Oe at 30 at% Zn. To understand better, the effect of 40% (by mole) Zn substitution on structural, piezoelectric, ferromagnetic and magnetoelectric properties of Pb(Zr0.52Ti0.48)O3 - CoFe2O4 (PZT - CFO) sintered composite is also explained. X-ray diffraction of Co0.6Zn0.4Fe2O4 (CZF) showed the shift in almost all diffraction peaks to lower diffraction angle confirming the increase in lattice parameter in all three direction from 8.378 (for CFO) to 8.395 Å for (Co,Zn)Fe2O4 (CZF). SEM and TEM results showed defect structure (cleavage, twins, strain fields) in the CZF particle, which is a clear indication of misfit strain developed due to lattice expansion. Magnetic properties measured over temperature (5 K – 1000 K) showed increased magnetization but lower magnetic Curie temperature in PZT - CZF particle. Magnetoelectric coefficient measured as function of ferrite concentration showed an increase of more than 100% after doping the CFO phase with 40% Zn. This enhancement can be attributed to increase in the lattice strain, magnetic permeability and decrease in coercivity.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1833
Author(s):  
Shaoyi Xu ◽  
Qiang Peng ◽  
Fangfang Xing ◽  
Hongyu Xue ◽  
Junwen Sun ◽  
...  

This paper presents the design, fabrication, and characterization of a compact current sensor based on magnetostrictive composites and resistance strain gauges. Firstly, we designed three kinds of current sensors with different structures, in which the shape of the giant magnetostrictive material (GMM) was cuboid, cylindrical, and semi-cylindrical. A set of finite element method (FEM) simulations were performed to qualitatively guide the design of three prototypes of the current sensor. It was determined that the most ideal shape of the GMM was semi-cylindrical. Secondly, Terfenol-D (TD) powder and epoxy resin were mixed to prepare magnetostrictive composites. In this paper, magnetostrictive composites with different particle size ranges and mass ratio were prepared and tested. The results show that the magnetostrictive composites had the best performance when the particle size range was 149–500 μm and the mass ratio of epoxy resin to TD powder was 1:5. Finally, this paper tested the performance of the sensor. The sensitivity, repeatability, and linear working range of the sensor reached 0.104 με/A, 2.51%, and 100–900 A respectively, when only 0.31 g of TD powder was employed. This means that current measurement with low cost, high sensitivity, and wide range was realized.


2020 ◽  
Vol 29 (8) ◽  
pp. 085041
Author(s):  
Andoni Lasheras ◽  
Paula G.Saiz ◽  
Jon Gutiérrez ◽  
Ana Catarina Lopes

2019 ◽  
Vol 805 ◽  
pp. 1266-1270 ◽  
Author(s):  
Bochen Li ◽  
Tianli Zhang ◽  
Yuye Wu ◽  
Chengbao Jiang

2017 ◽  
Vol 10 (05) ◽  
pp. 1750060 ◽  
Author(s):  
Alexander Yoffe ◽  
Hadas Kaniel ◽  
Doron Shilo

Stress induced magnetic field changes in epoxy-based Terfenol-D composite materials offer a unique way for stress sensing by using a remote magnetic field sensor. In this paper, we report simultaneous measurements of the stress, strain and emitted magnetic field during compressive tests performed at different temperatures in the range of [Formula: see text]C–65[Formula: see text]C. The observed results are explained based on the physical processes that occur at different stresses and temperature ranges. Measurement results reveal a temperature range ([Formula: see text]C–45[Formula: see text]C) suitable for stress sensing applications, at which the reverse magnetostrictive response is almost temperature insensitive. At 65[Formula: see text]C, the epoxy demonstrated a significant softening due to the glass transition, indicating that a high glass transition temperature is an important desired property for the epoxy matrix.


Sign in / Sign up

Export Citation Format

Share Document