The Design of High-Frequency OTA-C Filter for Wireless Sensors Network Applications

2013 ◽  
Vol 562-565 ◽  
pp. 668-673
Author(s):  
Zhi Qiang Gao ◽  
Wei Zheng ◽  
Liang Yin ◽  
Xiao Wei Liu

The paper is presented the design of high-frequency OTA-C band-pass filter with on-chip automatic tuning. In this design, the linear operational transconductance amplifier (OTA) is proposed based on fully complementary differential pairs with source degneration, and achieves both low-distortion figures and high-frequency operation. The matching design between the master filter and the slave filter is also given, and the non-ideality effect of the OTA-C filters with on-chip automatic tuning is discussed. The whole circuit is designed using TSMC 0.18μm 1.8V CMOS process and post-simulation results show the center frequency of filter is 105MHz with relative error of 0.4%, when the process corner varies between SS, TT, FF, and the temperature from-20 to 120°C.

2004 ◽  
Vol 14 (03) ◽  
pp. 690-695
Author(s):  
A. GHORI ◽  
P. GHOSH

Operational Transconductance Amplifier (OTA) is an excellent current mode device suited very well for VLSI implementation. In this contribution we report realization of OTA using Silicon-On-Insulator (SOI) structure based MOSFETs and compared them to OTA designed with bulk MOSFET. SOI based OTA outperformed bulk MOSFET OTA giving close to 10 GHz improvement in high frequency f T . A band-pass filter was implemented with SOI based OTA with a center frequency of 7 GHz and a bandwidth of 480 kHz.


2012 ◽  
Vol 490-495 ◽  
pp. 305-308
Author(s):  
Yu Liang ◽  
Yu Guo ◽  
Chuan Hui Wu ◽  
Yan Gao

Envelope analysis based on the combination of complex Morlet wavelet and Kurtogram have advantages of automatic calculation of the center frequency and bandwidth of required band-pass filter. However, there are some drawbacks in the traditional algorithm, which include that the filter bandwidth is not -3dB bandwidth and the analysis frequency band covered by the filter-banks are inconsistent at different levels. A new algorithm is introduced in this paper. Through it, both optimal center frequency and bandwidth of band-pass filter in the envelop analysis can be obtained adaptively. Meanwhile, it ensures that the filters in the filter-banks are overlapped at the point of -3dB bandwidth and the consistency of frequency band that the filter-banks covered.


2021 ◽  
Author(s):  
Wen-Tao Wang ◽  
Hao-Ran Zhu ◽  
Yu-Fa Sun ◽  
Zhi-Xiang Huang ◽  
Xian-Liang Wu

2014 ◽  
Vol 7 (6) ◽  
pp. 655-660 ◽  
Author(s):  
Photos Vryonides ◽  
Symeon Nikolaou ◽  
Sangkil Kim ◽  
Manos M. Tentzeris

A reconfigurable band-pass filter with switchable bandwidth, for wireless applications is demonstrated using a dual-mode microstrip square-loop resonator. The proposed filter has been designed on Rogers RO4003C and achieves switchable bandwidth by changing the length of two tuning stubs with the implementation of two strategically placed p-i-n diodes as switching elements. The filter was designed with a center frequency of 2.4 GHz and the two distinct operation states have bandwidths, 113 MHz (4.8%) with an insertion loss of 1.2 dB and 35 MHz (1.5%) with an insertion loss of 1.5 dB. The physical size of the fabricated reconfigurable filter including the implementation of the DC bias lines is comparable to the size of a conventional filter.


Author(s):  
Geoffrey A. Slipher ◽  
Randy A. Mrozek ◽  
Justin L. Shumaker

This paper describes some of the recent results of an ongoing U.S. Army research program examining the electronic behavior of hyperelastic stretchable capacitor, resistor, and inductor networks for which the conductor material employed is stretchable. As with traditional rigid analog components, stretchable electronic components exhibit frequency-dependant behavior. Unlike their rigid counterparts, stretchable electronic components may also exhibit dramatic strain-dependent behavior. In this way stretchable circuit networks may be viewed as controllable spatio-temporal filters. Resistance, capacitance, and inductance all change to varying degrees depending on the specific set of spatio-temporal inputs. These variations may be harnessed to create an adaptive circuit element that is controllable. This paper describes the results of integrating stretchable components into a tunable band-pass filter. Center frequency, bandwidth, and gain can be varied in a controllable way by varying the capacitance or resistance of specific circuit elements by stretching them. Biaxially stretchable components are described that are subjected to equibiaxial strain-states as high as 100% area strain. We examine the influence that the type of compliant conductor has on tunable circuit properties and on control authority.


Author(s):  
Shuxiang Song ◽  
Guolun Liu ◽  
Mingcan Cen ◽  
Chaobo Cai

Traditional filters usually have low Q and gain values and it is difficult to adjust their center frequencies. Moreover, it is very complicated to analyze their transmission charateristics through conventional methods. Therefore, in this paper, a tunable differential N-path bandpass filter that uses a new adjoint network method to analyze the transmission characteristics of the differential N-path structure is proposed. The filter circuit adopts a novel circuit structure consisting of two differential N-path structures, two transconductance amplifiers and an off-chip transformer. The differential structure eliminates even harmonics, the transconductance amplifier increases the circuit gain and the off-chip transformer acts as a balun, improving the filter’s Q value and achieving impedance matching. Unlike the traditional switching capacitance method used for analyzing the differential circuit structure, the method proposed in this paper does not involve complicated calculus operations. In fact, the method greatly simplifies these complex operations, and the transmission function of the circuit can be obtained through simple algebraic operations. The proposed filter was designed using TSMC 180[Formula: see text]nm CMOS process. Simulation results for a differential four-path bandpass filter formed under 1.2[Formula: see text]V supply voltage show that the gain of the filter is greater than 8.5 dB, the center frequency can be adjusted from 0.1[Formula: see text]GHz to 1[Formula: see text]GHz, the in-band insertion loss S11 is greater than 10 dB, the out-of-band IIP3 is greater than 10 dBm, the out-of-band rejection is 28 dB and the noise figure is less than 2.2 dB at [Formula: see text][Formula: see text]MHz.


Sign in / Sign up

Export Citation Format

Share Document