scholarly journals Feature Selection - Extraction Methods Based on PCA and Mutual Information to Improve Damage Detection Problem in Offshore Wind Turbines

2013 ◽  
Vol 569-570 ◽  
pp. 620-627 ◽  
Author(s):  
Ekhi Zugasti ◽  
Luis Eduardo Mujica ◽  
Javier Anduaga ◽  
Fernando Martínez

Damage Detection problem in Structural Health Monitoring (SHM) is widely studied by many researchers, therefore lots of damage detection algorithms can be found in the literature. Feature Selection / Extraction methods are essential in the accuracy of these algorithms, they provide the suitable data to be used. The main goal of this work is to improve the input data to be the most representative for the damage detection problem. This is done using different Feature Selection / Extraction methods (PCA, UmRMR, and a combination of both). After taking the representative features, the results are tested using a damage detection method; the NullSpace in this case. The data has been collected from a Laboratory Offshore tower model. The different results are compared (different preprocessing vs Raw data) and these show how the correct preselection of the data can improve damage detection.

2013 ◽  
Vol 569-570 ◽  
pp. 555-562
Author(s):  
Ana Gómez González ◽  
Ekhi Zugasti ◽  
Javier Anduaga

This paper presents a method to detect and identify damage in a laboratory offshore wind turbine support structure. The structure consists of three different parts: the jacket, the tower and the nacelle. The jacket is a lattice structure joined with several bolts. The tower consists of three different sections joined by bolts. The nacelle is composed of a single piece. The different parts are also joined with bolts. The damage in the structure is simulated by loosening some of the bolts in the jacket. Two damage detection algorithms, namely AutoRegressive methods and NullSpace methods, have been tested in a primitive variation of this structure without the jacket, obtaining good results. In this paper we present the application of the last damage detection method to the new structure with the jacket and an extension to identification of the damage.


2021 ◽  
Vol 6 (22) ◽  
pp. 51-59
Author(s):  
Mustazzihim Suhaidi ◽  
Rabiah Abdul Kadir ◽  
Sabrina Tiun

Extracting features from input data is vital for successful classification and machine learning tasks. Classification is the process of declaring an object into one of the predefined categories. Many different feature selection and feature extraction methods exist, and they are being widely used. Feature extraction, obviously, is a transformation of large input data into a low dimensional feature vector, which is an input to classification or a machine learning algorithm. The task of feature extraction has major challenges, which will be discussed in this paper. The challenge is to learn and extract knowledge from text datasets to make correct decisions. The objective of this paper is to give an overview of methods used in feature extraction for various applications, with a dataset containing a collection of texts taken from social media.


Author(s):  
Jochen Moll

Grouted connections are structural joints formed by a cementitious grout cast between two concentric circular tubes. They are widely used in the offshore construction of oil and gas platforms, and for offshore wind turbines (monopiles and jackets). However, their application in offshore wind turbine installations can be critical due to the high bending moments coming from wind loading. Recently, it was found that grouted connections show limited performance in offshore wind turbine installations leading to settlements between the steel tubes and steel/grout debonding. Hence, structural health monitoring techniques for grouted connections are needed that ensure a safe and reliable operation of offshore wind turbines. This short communication describes the successful application of electromechanical impedance spectroscopy for damage detection in grouted connections.


Author(s):  
I. Antoniadou ◽  
N. Dervilis ◽  
E. Papatheou ◽  
A. E. Maguire ◽  
K. Worden

Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector.


2021 ◽  
Author(s):  
Francisco d N Santos ◽  
Nymfa Noppe ◽  
Wout Weijtjens ◽  
Christof Devriendt

Abstract. The sustained development over the past decades of the offshore wind industry has seen older wind farms beginning to reach their design lifetime. This has led to a greater interest in wind turbine fatigue, the remaining useful lifetime and lifetime extensions. In an attempt to quantify the progression of fatigue life for offshore wind turbines, also referred to as a fatigue assessment, structural health monitoring (SHM) appears as a valuable contribution. Accurate information from a SHM system, can enable informed decisions regarding lifetime extensions. Unfortunately direct measurement of fatigue loads typically revolves around the use of strain gauges and the installation of strain gauges on all turbines of a given farm is generally not considered economically feasible. However, when we consider that great amounts of data, such as Supervisory Control And Data Acquisition (SCADA) and accelerometer data (of cheaper installation than strain gauges), is already being captured, this data might be used to circumvent the lack of direct measurements. It is then highly relevant to know what is the minimal sensor instrumentation required for a proper fatigue assessment. In order to determine this minimal instrumentation, a data-driven methodology is developed for real-world jacket-foundation Offshore Wind Turbines (OWT). Firstly, high-frequent 1s SCADA data is used to train an Artificial Neural Network (ANN) that seeks to estimate the quasi-static thrust load, and able to accurately estimate the thrust load with a Mean Absolute Error (MAE) below 2 %. The thrust load is then, along with 1s SCADA and acceleration data, processed into 10-minute metrics and undergoes a comparative analysis of feature selection algorithms with the goal of performing the most efficient dimensionality reduction possible. The features selected by each method are compared and related to the sensors. The variables chosen by the best-performing feature selection algorithm then serve as the input for a second ANN which estimates the tower fore-aft (FA) bending moment Damage Equivalent Loads (DEL), a valuable metric closely related to fatigue. This approach can then be understood as a two-tier model: the first tier concerns itself with engineering and processing 10 minute features, which will serve as an input for the second tier. It is this two-tier methodology that is used to assess the performance of 8 realistic instrumentation setups (ranging from 10 minute SCADA to 1s SCADA, thrust load and dedicated tower SHM accelerometers). Amongst other findings, it was seen that accelerations are essential for the model's generalization. The best performing instrumentation setup is looked in greater depth, with validation results of the tower FA DEL ANN model show an accuracy of around 1 % (MAE) for the training turbine and below 3 % for other turbines, with a slight underprediction of fatigue rates. Finally, the ANN DEL estimation model – based on a intermediate instrumentation setup (1s SCADA, thrust load, low quality accelerations) – is employed in a farm-wide setting, and the probable causes for outlier behaviour investigated.


2014 ◽  
Vol 134 (8) ◽  
pp. 1096-1103 ◽  
Author(s):  
Sho Tsujimoto ◽  
Ségolène Dessort ◽  
Naoyuki Hara ◽  
Keiji Konishi

Sign in / Sign up

Export Citation Format

Share Document