Evaluation of Fatigue Crack Growth Rates and Threshold Conditions in an Al 2124-T851 Alloy at Different Load Asymmetry Considering Microstructure Orientation

2013 ◽  
Vol 577-578 ◽  
pp. 321-324
Author(s):  
Ivo Černý

Results of a fairly comprehensive experimental programme aimed at evaluation of fatigue crack growth (FCG) rates in an aircraft Al 2124 alloy in T851 state, after hot rolling, solution annealing, small plastic strain and artificial ageing are presented and discussed. Measurement was performed not only in the region of stable crack growth, but also in the threshold region enabling to estimate threshold values of stress intensity factor range using method of regression analyses. FCG rates were evaluated in both L-T and T-S directions to evaluate sensitivity of FCG resistance on different microstructure orientation. Different load asymmetry conditions R = Fmin / Fmax were used, namely R = 0.1 and 0.6. Repeated measurements in more than one specimen at each condition enabled to evaluate reproducibility, scatter of measurement and to perform eventually probabilistic assessment. The reproducibility of measurement was particularly good for L-T orientation. In this case, threshold values were somewhat higher and FCG rates lower in comparison with the T-S orientation. In the contrary, cyclic fracture toughness in T-S orientation was slightly higher. The results are discussed form the viewpoint of residual fatigue life in aircraft components considering probabilistic aspects.

2011 ◽  
Vol 465 ◽  
pp. 435-438 ◽  
Author(s):  
Ivo Černý ◽  
Luboš Remar ◽  
Dagmar Mikulová

An evaluation of threshold values and fatigue crack growth (FCG) rates is a fundamental condition for an application of damage tolerance philosophy in numerous machinery components. This philosophy starts to be applied even in such problematic cases like aircraft engine blades. The paper contains results of an evaluation of FCG rates including threshold values in a heat resistant Inconel 718 / René 41 welds used in advanced manufacture processes of jet engine rotor blades. Measurement was performed at load asymmetry R = 0.05, temperature 700 oC, at low load frequency f = 0.3 Hz. Methodological approaches are mentioned. Results of FCG and particularly threshold values are discussed in connection with fractographical analyses. In addition, crack closure phenomenon and closure values are considered and discussed.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1183
Author(s):  
Edmundo R. Sérgio ◽  
Fernando V. Antunes ◽  
Diogo M. Neto ◽  
Micael F. Borges

The fatigue crack growth (FCG) process is usually accessed through the stress intensity factor range, ΔK, which has some limitations. The cumulative plastic strain at the crack tip has provided results in good agreement with the experimental observations. Also, it allows understanding the crack tip phenomena leading to FCG. Plastic deformation inevitably leads to micro-porosity occurrence and damage accumulation, which can be evaluated with a damage model, such as Gurson–Tvergaard–Needleman (GTN). This study aims to access the influence of the GTN parameters, related to growth and nucleation of micro-voids, on the predicted crack growth rate. The results show the connection between the porosity values and the crack closure level. Although the effect of the porosity on the plastic strain, the predicted effect of the initial porosity on the predicted crack growth rate is small. The sensitivity analysis identified the nucleation amplitude and Tvergaard’s loss of strength parameter as the main factors, whose variation leads to larger changes in the crack growth rate.


2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


2003 ◽  
Vol 125 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Muhammad Irfan-ul-Haq ◽  
Nesar Merah

This study addresses the effect of temperature on fatigue crack growth (FCG) behavior of CPVC. FCG tests were conducted on CPVC SEN tensile specimens in the temperature range −10 to 70°C. These specimens were prepared from 4-in. injection-molded pipe fittings. Crack growth behavior was studied using LEFM concepts. The stress intensity factor was modified to include the crack closure and plastic zone effects. The effective stress intensity factor range ΔKeff gave satisfactory correlation of crack growth rate (da/dN) at all temperatures of interest. The crack growth resistance was found to decrease with temperature increase. The effect of temperature on da/dN was investigated by considering the variation of mechanical properties with temperature. Master curves were developed by normalizing ΔKeff by fracture strain and yield stress. All the da/dN-ΔK curves at different temperatures were collapsed on a single curve. Crazing was found to be the dominant fatigue mechanism, especially at high temperature, while shear yielding was the dominant mechanism at low temperatures.


2005 ◽  
Vol 297-300 ◽  
pp. 1120-1125 ◽  
Author(s):  
Myung Hwan Boo ◽  
Chi Yong Park

In order to study the influence of stress ratio and WC grain size, the characteristics of fatigue crack growth were investigated in WC-Co cemented carbides with two different grain sizes of 3 and 6 µm. Fatigue crack growth tests were carried out over a wide range of fatigue crack growth rates covering the threshold stress intensity factor range DKth. It was found that crack growth rate da/dN against stress intensity factor range DK depended on stress ratio R. The crack growth rate plotted in terms of effective stress intensity factor range DKeff still exhibited the effect of microstructure. Fractographic examination revealed brittle fracture at R=0.1 and ductile fracture at R=0.5 in Co binder phase. The amount of Co phase transformation for stress ratio was closely related to fatigue crack growth characteristics.


Author(s):  
Yuichiro Nomura ◽  
Kazuya Tsutsumi ◽  
Hiroshi Kanasaki ◽  
Naoki Chigusa ◽  
Kazuhiro Jotaki ◽  
...  

Although reference fatigue crack growth curves for austenitic stainless steels in air environments and boiling water reactor (BWR) environments were prescribed in JSME S NA1-2002, similar curves for pressurized water reactors (PWR) were not prescribed. In order to propose the reference curve in PWR environment, fatigue tests of austenitic stainless steels in simulated PWR primary water environment were carried out. According to the procedure to determine the reference fatigue crack growth curve of BWR, which of PWR is proposed. The reference fatigue crack growth curve in PWR environment have been determines as a function of stress intensity factor range, Temperature, load rising time and stress ratio.


1999 ◽  
Vol 123 (3) ◽  
pp. 311-315 ◽  
Author(s):  
J. Zhao and ◽  
Y. Mutoh ◽  
T. Ogawa

The stress ratio effect on the fatigue crack growth behavior of 95Pb-5Sn solder has been investigated. It is found that both ΔJ and ΔK can correlate fatigue crack growth data well, which means that the crack growth behavior of the 95Pb-5Sn solder under the frequency of 10 Hz was dominantly cyclic dependent. The da/dN-ΔJ relationship can be expressed as: da/dN=1.1×10−11s˙ΔJ1.45. Low level of crack closure was found only in the near-threshold region. Except in this region, no crack closure was observed in the present test conditions. Both transgranular and intergranular fractures were observed on fracture surfaces: the former was dominant in most test conditions and the latter was dominant at the high stress ratio of 0.7. Striations and striation-like features were also found. Many slip bands and cavities along the grain boundary were observed on the crack wake and ahead of the crack tip in the high crack growth rate region.


Author(s):  
Carl E. Jaske

This paper describes an accepted approach for predicting fatigue crack-growth life in pipelines. Fatigue life is computed as the number of cycles for a crack-like flaw to grow from an initial size to a final critical size. This computation is performed by integrating a fracture-mechanics model for fatigue crack growth. The initial flaw size is estimated either from inspection results or by using fracture mechanics to predict the largest flaw that would have survived a hydrostatic pressure test. The final flaw size is estimated using fracture mechanics. Fracture-mechanics models for computing fatigue crack growth and predicting flaw size are reviewed. The anticipated cyclic loading must be characterized to perform the crack-growth calculations. Typically, cyclic loading histories, such as pressure cycle data, are analyzed and used to estimate future loadings. To utilize the crack-growth models, the cycles in the loading history must be counted. The rainflow cycle counting procedure is used to characterize the loading history and develop a histogram of load range versus number of cycles. This histogram is then used in the fatigue crack-growth analysis. Results of example calculations are discussed to illustrate the procedure and show the effects of periodic hydrostatic testing, threshold stress intensity factor range, and pressure ratio on predicted fatigue crack-growth life.


Sign in / Sign up

Export Citation Format

Share Document