Wear Behavior of Ti(N,C)-Al2O3 Coated Cemented Carbide Tools during Milling Ti2AlNb-Based Alloy

2013 ◽  
Vol 589-590 ◽  
pp. 361-365
Author(s):  
Xiao Di Ma ◽  
Jiu Hua Xu ◽  
Wen Feng Ding ◽  
Dong Sheng Lv ◽  
Yu Can Fu

Ti2AlNb-based alloy is regarded as lightweight high-temperature structural material, which is expected to replace the nickel-base super alloy due to its low density, high elastic modulus, strength retention at elevated temperature, outstanding oxide resistance. However, these excellent properties also make Ti2AlNb to be difficult-to-cut material. In this paper, the milling experiment of Ti2AlNb alloy was carried out using Ti(N,C)-Al2O3 coated cemented carbide tools. SEM and EDS analysis was utilized to observe the worn tools to determine the tool failure modes and wear mechanisms. Tool life when milling Ti2AlNb was short and heavily dependent on the cutting parameters. During milling, coating material of the tool was separated rapidly from the base material. When the cutting speed exceeded 100m/min, serious cracks appeared on the tool surface. Thermal fatigue, adhesive and attrition were the predominant wear mechanisms of the coated tools.

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 850 ◽  
Author(s):  
Zhaojun Ren ◽  
Shengguan Qu ◽  
Yalong Zhang ◽  
Xiaoqiang Li ◽  
Chao Yang

In this paper, TiAlN-coated cemented carbide tools with chip groove were used to machine titanium alloy Ti-6Al-0.6Cr-0.4Fe-0.4Si-0.01B under dry conditions in order to investigate the machining performance of this cutting tool. Wear mechanisms of TiAlN-coated cemented carbide tools with chip groove were studied and compared to the uncoated cemented carbide tools (K20) with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The effects of the cutting parameters (cutting speed, feed rate and depth of cut) on tool life and workpiece surface roughness of TiAlN-coated cemented carbide tools with chip groove were studied with a 3D super-depth-of-field instrument and a surface profile instrument, respectively. The results showed that the TiAlN-coated cemented carbide tools with chip groove were more suitable for machining TC7. The adhesive wear, diffusion wear, crater wear, and stripping occurred during machining, and the large built-up edge formed on the rake face. The optimal cutting parameters of TiAlN-coated cemented carbide tools were acquired. The surface roughness Ra decreased with the increase of the cutting speed, while it increased with the increase of the feed rate.


Wear ◽  
2017 ◽  
Vol 376-377 ◽  
pp. 143-151 ◽  
Author(s):  
Volodymyr Bushlya ◽  
Daniel Johansson ◽  
Filip Lenrick ◽  
Jan-Eric Ståhl ◽  
Fredrik Schultheiss

2017 ◽  
Vol 261 ◽  
pp. 229-236 ◽  
Author(s):  
Tomáš Vopát ◽  
Marián Haršáni ◽  
Marcel Kuruc ◽  
Vladimír Šimna ◽  
Rudolf Zaujec ◽  
...  

Nitride hard coatings Al25.5Cr21Si3.5N were deposited on WC-Co substrates with a different thickness and a negative substrate bias voltage by the LAteral Rotating Cathodes Arc technology. The nanoindentation tests were performed for analysis of AlCrSiN coatings in order to determine the most promising combination of parameters for subsequent machining. On the basis of results of nanohardness measurement and Ratio H/E*, which represents the resistance to plastic deformation and cracking, deposition conditions were selected for coating of turning cemented carbide inserts. For the evaluation of coating adhesion to substrate, Mercedes adhesion test was used. Chip forming tests and long-term tool life tests were performed for determination of cutting parameters (cutting speed, feed rate and depth of cut) for AlCrSiN coated cemented carbide inserts when machining austenitic stainless steel material.


2011 ◽  
Vol 413 ◽  
pp. 347-350
Author(s):  
Gui Quan Han ◽  
Zeng Zhi Zhang

The cutting temperature rules of cemented carbide tools YW2 during cutting austenitic manganese steel ZGMn13 were investigated by experiments through systematically changing cutting parameters (cutting speed, feed, cutting depth) under the condition of dry cutting. The experiential expressions for cutting temperature of tools were summarized while dominating factors for influencing cutting temperature were analyzed. The results show that accounting values by experiential formulae basically match actually measuring values by experiments which may play an important role in studying cutting law of austenitic manganese steel. Cutting speed plays a major role in determining the temperature of cutting tools, followed by feed rate and depth of cutting.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 137 ◽  
Author(s):  
Kairui Zheng ◽  
Fazhan Yang ◽  
Na Zhang ◽  
Qingyu Liu ◽  
Fulin Jiang

Titanium alloys are widely used in various fields, but their machinability is poor because the chip would easily adhere to the tool surface during cutting, causing poor surface quality and tool wear. To improve the cutting performance of titanium alloy Ti-6Al-4V, experiments were conducted to investigate the effect of micro textured tool on the cutting performances. The cemented carbide tools whose rake faces were machined with line, rhombic, and sinusoidal groove textures with 10% area occupancy rates were adopted as the cutting tools. The effects of cutting depth and cutting speed on feed force and main cutting force were discussed based on experimental results. The results show that the cutting force produced by textured tools is less than that produced by non-textured tools. Under different cutting parameters, the best cutting performance can be obtained by using sinusoidal textured tools among the four types of tools. The wear of micro textured tools is significantly lower than that of non-textured tools, due to a continuous lubrication film between the chip and the rake face of the tool that can be produced because the micro texture can store and replenish lubricant. The surface roughness obtained using the textured tool is better than that using the non-textured tool. The surface roughness Ra can be reduced by 35.89% when using sinusoidal textured tools. This study is helpful for further improving the cutting performance of cemented carbide tools on titanium alloy and prolonging tool life.


2014 ◽  
Vol 800-801 ◽  
pp. 191-196
Author(s):  
Bin Zhao ◽  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Hong Tao Zhu

The nickel-based superalloy GH4033 is one of the difficult-to-cut materials. In order to investigate the machinability of GH4033, the tool cutting performance, tool failure modes, tool life and the relationships between surface roughness and tool flank wear were studied by using different coated cemented carbide cutting tools under dry cutting. Aiming at the amount of metal removal combining with the tool life and surface quality, the better cutting tool coating type and optimal cutting parameters were obtained through the orthogonal experiments. The results showed that the cutting performance of TiCN coated tool (GC4235) was better than that of TiAlN coated tool (JC450V). With these two kinds of tools, the machined surface roughness decreased to a minimum value and then increased with the increase of flank wear. When cutting GH4033, the main wear mechanism for both of the two types of tools included adhesive wear, diffusive wear, abrasive wear, edge wear and coating peeling.


Sign in / Sign up

Export Citation Format

Share Document