Experimental Study on Turning Nickel-Based Superalloy GH4033 with Coated Cemented Carbide Tools

2014 ◽  
Vol 800-801 ◽  
pp. 191-196
Author(s):  
Bin Zhao ◽  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Hong Tao Zhu

The nickel-based superalloy GH4033 is one of the difficult-to-cut materials. In order to investigate the machinability of GH4033, the tool cutting performance, tool failure modes, tool life and the relationships between surface roughness and tool flank wear were studied by using different coated cemented carbide cutting tools under dry cutting. Aiming at the amount of metal removal combining with the tool life and surface quality, the better cutting tool coating type and optimal cutting parameters were obtained through the orthogonal experiments. The results showed that the cutting performance of TiCN coated tool (GC4235) was better than that of TiAlN coated tool (JC450V). With these two kinds of tools, the machined surface roughness decreased to a minimum value and then increased with the increase of flank wear. When cutting GH4033, the main wear mechanism for both of the two types of tools included adhesive wear, diffusive wear, abrasive wear, edge wear and coating peeling.

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 850 ◽  
Author(s):  
Zhaojun Ren ◽  
Shengguan Qu ◽  
Yalong Zhang ◽  
Xiaoqiang Li ◽  
Chao Yang

In this paper, TiAlN-coated cemented carbide tools with chip groove were used to machine titanium alloy Ti-6Al-0.6Cr-0.4Fe-0.4Si-0.01B under dry conditions in order to investigate the machining performance of this cutting tool. Wear mechanisms of TiAlN-coated cemented carbide tools with chip groove were studied and compared to the uncoated cemented carbide tools (K20) with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The effects of the cutting parameters (cutting speed, feed rate and depth of cut) on tool life and workpiece surface roughness of TiAlN-coated cemented carbide tools with chip groove were studied with a 3D super-depth-of-field instrument and a surface profile instrument, respectively. The results showed that the TiAlN-coated cemented carbide tools with chip groove were more suitable for machining TC7. The adhesive wear, diffusion wear, crater wear, and stripping occurred during machining, and the large built-up edge formed on the rake face. The optimal cutting parameters of TiAlN-coated cemented carbide tools were acquired. The surface roughness Ra decreased with the increase of the cutting speed, while it increased with the increase of the feed rate.


2017 ◽  
Vol 266 ◽  
pp. 69-75 ◽  
Author(s):  
Tadahiro Wada

In order to clarify the effectiveness of the multi-layer AlCrWN/AlCrWSiN-coated cemented carbide tool, the wear progress was investigated in cutting hardened sintered steel using three types of coated tool. Namely, Tool I had the dual-layer (Al60,Cr25,W15)(C,N)/(Al53,Cr23,W14,Si10)(C,N)-coating film, Tool II had the multi-layer (Al60,Cr25,W15)(C,N)/(Al53,Cr23,W14,Si10)(C,N)-coating film and Tool III had the multi-layer (Al60,Cr25,W15)N/(Al53,Cr23,W14,Si10)N-coating film. The following results were obtained: (1) The main tool failure of the three types of coated tools were the flank wear within the maximum value of the flank wear width of 0.2 mm. (2) The critical scratch load of the three types of coated tools was 130 N or more. (3) The micro-hardness of Tool III 3000 HV0.25N was the highest among the three types of coated tools. (4) The mean value of the friction coefficient of the (Al53,Cr23,W14,Si10)N coating film, 0.21, was approximately half that of the (Al53,Cr23,W14,Si10)(C,N) coating film, 0.41. (5) In the case of the higher cutting speed, the wear progress of the multi-layer coating system was slower than that of the dual-layer coating system. (6) In the case of the cutting hardened sintered steel using the multi-layer coated tool, the wear progress of the Type III coated tool was slower than that of the Type II coated tool.


2010 ◽  
Vol 431-432 ◽  
pp. 365-368
Author(s):  
Wen Zhuang Lu ◽  
Dun Wen Zuo ◽  
B. Yang ◽  
Feng Xu ◽  
M. Wang

The performance of CVD diamond coated cemented carbide cutting tool in comparison with K10 uncoated cemented carbide tool in the dry turning of Al-20wt%Si aluminum-silicon hypereutectic alloy was investigated. The obtained results showed a better cutting performance for CVD diamond coated tool in machining Al-20wt%Si, particularly in terms of cutting force, tool wear, surface roughness, when compared with K10. The cutting forces are lower with CVD diamond coated tool and the depth of cut promotes a great increment of the cutting force. The tool wear processes taking place in the tool tips in all cutting conditions. The tool life of CVD diamond coated tool is longer than that of the uncoated K10. The surface roughness Ra increases obviously with the increase of feed rate using a CVD diamond coated cutting tool. A higher feed rate produces surface rougher. The chip morphology in machining of Al-20wt%Si alloy by CVD diamond coated tool is continuous. The tests showed that the CVD diamond coated tool can be applied on the K10 tool at low feed rate to produce high quality surfaces.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771061 ◽  
Author(s):  
Duc Tran Minh ◽  
Long Tran The ◽  
Ngoc Tran Bao

In this article, an attempt has been made to explore the potential performance of Al2O3 nanoparticle–based cutting fluid in hard milling of hardened 60Si2Mn steel (50-52 HRC) under different minimum quantity lubrication conditions. The comparison of hard milling under minimum quantity lubrication conditions is done between pure cutting fluids and nanofluids (in terms of surface roughness, cutting force, tool wear, and tool life). Hard milling under minimum quantity lubrication conditions with nanofluid Al2O3 of 0.5% volume has shown superior results. The improvement in tool life almost 177%–230% (depending on the type of nanofluid) and the reduction in surface roughness and cutting forces almost 35%–60% have been observed under minimum quantity lubrication with Al2O3 nanofluids due to better tribological behavior as well as cooling and lubricating effects. The most outstanding result is that the uncoated cemented carbide insert can be effectively used in machining high-hardness steels (>50 HRC) while maintaining long tool life and good surface integrity (Ra = 0.08–0.35 µm; Rz = 0.5–2.0 µm, equivalent to finish grinding) rather than using the costlier tools like coated carbide, ceramic, and (P)CBN. Therefore, using hard nanoparticle–reinforced cutting fluid under minimum quantity lubrication conditions in practical manufacturing becomes very promising.


2018 ◽  
Vol 764 ◽  
pp. 261-270 ◽  
Author(s):  
X.K. Yang ◽  
Y.G. Wang ◽  
W.L. Ge ◽  
L. Chen ◽  
H. Ge

Cutting performance of reaming alloy gray cast iron HT250 using carbide, cermet and CBN reamers was studied. Experiments were conducted under constant cutting parameters and cooling strategy. Tool life, hole diameter, spindle power, surface roughness and tool wear were analyzed. The hole diameter and spindle power would keep steady when reaming with carbide reamer after 400 holes to the tool life of 1050 holes. But holes diameter reduced and spindle power increased with the number of machined holes increasing during the whole tool life when using cermet or CBN reamer. The surface roughness Rz of the holes reamed by carbide reamer was within the tolerance, although it was worse than that reamed by cermet and CBN reamer. It can be summarized that the carbide was the most suitable material for reaming alloy gray cast iron because of the longest tool life, steady hole diameter and spindle power, qualified surface roughness. After machining, crater wear and clearance wear were produced on the cermet and CBN reamer, which were caused by abrasive wear. In addition, flaking and breakages appeared on the edge of cermet reamer, which were not found on CBN reamer. However, the clearance wear of carbide reamer was smaller than that of CBN reamer, and built up edge was found along the cutting edge.


Author(s):  
Manabu Iwai ◽  
Ryouta Yamashita ◽  
Satoshi Anzai ◽  
Shinichi Ninomiya

Abstract The authors have proposed a micro bubble coolant in which micro bubbles (20∼50μm in diameter) are included in water soluble coolant. In the previous study, it was confirmed that the tool life was improved by applying the micro bubble coolant to various machining operations such as drilling, turning and grinding. Also, purification effects of the micro bubble coolant were found. In this study, micro bubble coolant in which inert gases (N2 and CO2) were mixed was proposed to be applied to grinding processes for further improvement in grinding performances. When nitrogen gas (2L/min) was mixed with the micro bubble in the water soluble coolant (70L), amount of the dissolved oxygen in coolant decreased to 0.5mg/L. And concentration of the carbon dioxide gas in the coolant increased to 100mg/L when carbon dioxide gas (2L/min) was mixed in. From the result of grinding test on high speed steel, it was found that grinding performances improved when the micro bubble coolant with any of air, N2 and CO2 gases was used. The grinding force decreased by a factor of about 15% and the tool life increased by 20∼30%. When nitrogen gas was mixed in, the surface roughness improved by about 15%. In grinding stainless steels, performances such as grinding force, tool life and surface roughness improved by 10% when nitrogen gas was mixed in. In addition, a tendency of flank wear reduction and improvement in the surface roughness were observed when air micro bubble was mixed into the coolant in the turning of high carbon steel and Inconel 718 as well. When N2 micro bubble was generated in the coolant, a flank wear was reduced by 20% and surface roughness was improved by 30 to 40%. These effects were higher than the coolant with air micro bubble.


2014 ◽  
Vol 1017 ◽  
pp. 630-635 ◽  
Author(s):  
Han Lian Liu ◽  
Qiang Shi ◽  
Chuan Zhen Huang ◽  
Li Mei Wang ◽  
Bin Zou ◽  
...  

A new developed TiN-TiB2 ceramic cutting tool material (marked as TBN5) with high comprehensive mechanical properties was fabricated by the in-situ integration synthesis process. The cutting performance of TBN5 tool in continuously turning the austenitic stainless steel 1Cr18Ni9Ti was experimentally investigated; the failure modes and failure mechanisms of the cutting tool TBN5 were analyzed combined with its mechanical properties. Aiming at the materials removal amount, the optimal cutting parameters of TBN5 tool in turning 1Cr18Ni9Ti were firstly obtained by the orthogonal tests; and then with this cutting parameters, the cutting performance of TBN5 compared to the commercial tools LT55 and SG4 was studied. The results showed that the advanced tool TBN5 could get longer tool life than LT55 and SG4; the main failure modes of TBN5 were flank wear, breakage and the flaking of main cutting edge. The scope of its flaking was smaller and diffusion wear was not obvious, which was related to the higher fracture toughness and the higher thermal conductivity of TBN5.


2020 ◽  
Vol 22 (4) ◽  
pp. 41-53
Author(s):  
Manojkumar Sheladiya ◽  
◽  
Shailee Acharya ◽  
Ghanshyam Acharya ◽  
◽  
...  

Introduction. The machinability is typical criteria to be investigated and different authors suggested different parameters describing its quantification. Different parameters i. e. speed, feed, depth of cut, tool work-piece combination, machine types and its condition, cutting fluid, machinist expertise, etc. are contributing directly to the tool life. The selection of the tool for the machining impacts greatly on the economic viability of the machining in terms of energy usage and tooling costs. The method of investigation. The current research emphasis mainly on tool life investigation when machining the mild steel specimens ISRO 50, BIS 1732:1989 at constant cutting speed i.e. 200 m / min. In the industries the mild steel material is commonly used for various products manufacturing. Considering the high demands on productivity and surface finish, machining at 200 m / min is the preferred. The computerized numerical control machine (CNC DX-150) is used for the turning. The four corner insert (TNMG 120408) is used for different machining times i.e. 10, 15, 20 and 25 minutes respectively. The flank wear of the tool is measured with calibrated optical microscope. The temperature of the tool corner during machining is continuously measured for possible impact of temperature on bonding properties of the tool insert and impact on red hardness. Results and discussion. The plot of flank wear vs. machining time will give the value of tool life. The other quality output parameter, such as surface roughness, is measured after machining, indicating surface irregularities in root means square value. Efforts have been made to identify the relationship of tool life, machining time, the quantity of metal removed, surface roughness, and tool bit temperature.


Sign in / Sign up

Export Citation Format

Share Document