Theoretical Meso-Model of Al2O3/ZrO2 Ceramic Response under Compression

2014 ◽  
Vol 601 ◽  
pp. 92-95
Author(s):  
Tomasz Sadowski ◽  
Liviu Marsavina

This paper presents theoretical modeling of two-phase ceramic composites subjected to compression. The meso-mechanical model allows for inclusion of all microdefects in the polycrystalline structure that exists at the grain boundary interfaces and inside the grains. The constitutive relations for the Al2O3/ZrO2composite with the gradual degradation of the material properties due to different defects development were formulated.

2010 ◽  
Vol 638-642 ◽  
pp. 2743-2748
Author(s):  
Tomasz Sadowski ◽  
Liviu Marsavina

Two-phase ceramic composite materials, (CMC, e.g. Al2O3/ZrO2), have a non-linear and complex overall response to applied loads due to: different phases, existence of an inital porosity, development of limited plasticity and internal microdefects. All microdefects act as stress concentrators and locally change the state of stress, leading to the development of mesocracks and finally macrocracks. Experimental results show that defects develop mainly inter-granular and cause inhomogeneity and induced anisotropy of the solid. Modelling of such material response is possible by multiscale approach describing different phenomena occuring at different scales: micro- meso- and macro- ones. The paper presents uniaxial tension process of the Al2O3/ZrO2 composite with the gradual degradation of the material properties due to different defects development.


Author(s):  
C.L. Briant

Grain boundary segregation is the process by which solute elements in a material diffuse to the grain boundaries, become trapped there, and increase their local concentration at the boundary over that in the bulk. As a result of this process this local concentration of the segregant at the grain boundary can be many orders of magnitude greater than the bulk concentration of the segregant. The importance of this problem lies in the fact that grain boundary segregation can affect many material properties such as fracture, corrosion, and grain growth.One of the best ways to study grain boundary segregation is with Auger electron spectroscopy. This spectroscopy is an extremely surface sensitive technique. When it is used to study grain boundary segregation the sample must first be fractured intergranularly in the high vacuum spectrometer. This fracture surface is then the one that is analyzed. The development of scanning Auger spectrometers have allowed researchers to first image the fracture surface that is created and then to perform analyses on individual grain boundaries.


Author(s):  
Brian Ralph ◽  
Barlow Claire ◽  
Nicola Ecob

This brief review seeks to summarize some of the main property changes which may be induced by altering the grain structure of materials. Where appropriate an interpretation is given of these changes in terms of current theories of grain boundary structure, and some examples from current studies are presented at the end of this paper.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2350
Author(s):  
Jia Liu ◽  
Guiyun Tian ◽  
Bin Gao ◽  
Kun Zeng ◽  
Yongbing Xu ◽  
...  

Stress is the crucial factor of ferromagnetic material failure origin. However, the nondestructive test methods to analyze the ferromagnetic material properties’ inhomogeneity on the microscopic scale with stress have not been obtained so far. In this study, magnetic Barkhausen noise (MBN) signals on different silicon steel sheet locations under in situ tensile tests were detected by a high-spatial-resolution magnetic probe. The domain-wall (DW) motion, grain, and grain boundary were detected using a magneto-optical Kerr (MOKE) image. The time characteristic of DW motion and MBN signals on different locations was varied during elastic deformation. Therefore, a time-response histogram is proposed in this work to show different DW motions inside the grain and around the grain boundary under low tensile stress. In order to separate the variation of magnetic properties affected by the grain and grain boundary under low tensile stress corresponding to MBN excitation, time-division was carried out to extract the root-mean-square (RMS), mean, and peak in the optimized time interval. The time-response histogram of MBN evaluated the silicon steel sheet’s inhomogeneous material properties, and provided a theoretical and experimental reference for ferromagnetic material properties under stress.


Author(s):  
Wei Yao ◽  
Christophe Morel

In this paper, a multidimensional two-fluid model with additional turbulence k–ε equations is used to predict the two-phase parameters distribution in freon R12 boiling flow. The 3D module of the CATHARE code is used for numerical calculation. The DEBORA experiment has been chosen to evaluate our models. The radial profiles of the outlet parameters were measured by means of an optical probe. The comparison of the radial profiles of void fraction, liquid temperature, gas velocity and volumetric interfacial area at the end of the heated section shows that the multidimensional two-fluid model with proper constitutive relations can yield reasonably predicted results in boiling conditions. Sensitivity tests show that the turbulent dispersion force, which involves the void fraction gradient, plays an important role in determining the void fraction distribution; and the turbulence eddy viscosity is a significant factor to influence the liquid temperature distribution.


Author(s):  
Yuri Kornienko

The main goal of this paper is to describe new approach to constructing generalized closure relationships for pipe, annular and sub-channel transfer coefficients for wall friction, heat and mass transfer. The novelty of this approach is that it takes into account not only axial and transversal parameter distributions, but also an azimuthal substance transfer effects. These constitutive relations, which are primordial in the description of single- and two-phase one-dimensional (1D) flow models, can be derived from the initial 3D drift flux formulation. The approach is based on the Reynolds flow, boundary layer, and substance transfer generalized coefficient concepts. Another aim is to illustrate the validity of the “conformity principle” for the limiting cases. The method proposed in this paper is founded on the similarity theory, boundary layer model, and a phenomenological description of the regularity of the substance transfer (momentum, heat, and mass) as well as on an adequate simulation of the flow structures. With the proposed generalized approach it becomes possible to develop an integrated in form and semi-empirical in maintenance structure analytical relationships for wall friction, heat and mass transfer coefficients.


1987 ◽  
Vol 40 (10) ◽  
pp. 1393-1402 ◽  
Author(s):  
Erol Sancaktar

Material characterization of structural adhesives in the bulk and bonded forms is discussed. Constitutive relations used for describing stress–strain data are reviewed. The difficulties associated with adhesive characterization in the bonded form are cited. Common testing procedures for adhesive characterization in the bulk and bonded forms are reviewed. In presenting the constitutive relations used in material characterization of structural adhesives, deformation theories introduced by Hencky are reviewed first. The modifications made in this theory to render it rate dependent and bilinear are discussed and applications to adhesive characterization are cited. Application of linear viscoelasticity, mechanical model characterization, and its use in describing the dependence of adhesive and cohesive strengths on rate, temperature, and bond thickness are presented. The time–temperature superposition principle and three-dimensional stress–strain relations in integral and differential operator forms are reviewed. Frequent assumptions for dilatation and distortion operations are presented. Procedures for describing nonlinear viscoelastic behavior are reviewed. It is pointed out that the extent of nonlinearity is dependent on both the stress level and the time scale. The use of nonlinear spring and dashpot elements, nonlinear differential operators, and perturbation of elastic and viscous coefficients are cited. Prandtl’s incremental theory of plasticity and its extension in the form of over-stress theory is presented. The incorporation of this over-stress idea into the viscoelastic mechanical model characterization is discussed. The modified Bingham model and the Chase–Goldsmith model developed in this fashion and their application to adhesive material characterization are presented. The use of empirical relations for the description of creep behavior is discussed. Prediction of shear behavior based on bulk tensile data is demonstrated. It is suggested that characterization of adhesive behavior in the bonded form should include the application of stress analysis, fracture mechanics, polymer chemistry and surface analysis techniques. In testing bonded samples the use of thick adherend symmetric single lap geometry or napkin ring test geometry is advised and it is suggested that the specimens should be prepared with the same surface preparation and cure techniques.


Sign in / Sign up

Export Citation Format

Share Document