Research for the Resonator Structure Process Technology of Resonant Pressure Sensors

2014 ◽  
Vol 609-610 ◽  
pp. 1020-1022
Author(s):  
Zheng Yuan Zhang ◽  
Yang Cao ◽  
Yong Mei ◽  
Jian Gen Li ◽  
Zhi Cheng Feng

The fabrication of butterfly-shape resonator is key for high precision resonator, for requiring suspend on the silicon substrate. This paper is focused on the technology of making butterfly-shape resonator. the variety of structure design can be used to make butterfly-shape resonator have been analyzed, the structure of butterfly-shape resonator is obtained, and for reducing the etch surface roughness, KOH etching conditions, such as composition, concentration, and temperature of etch solution, have been done. Combining with above testing results, the structure design and optimization KOH etching technology are obtained ,based on the technology, using the boron etch stop technique , the silicon butterfly-shape resonator has been done, it can be used effectively in the fabrication of the silicon resonant sensor.

Author(s):  
Aleš Chvála ◽  
Robert Szobolovszký ◽  
Jaroslav Kováč ◽  
Martin Florovič ◽  
Juraj Marek ◽  
...  

In this paper, several methods suitable for real time on-chip temperature measurements of power AlGaN/GaN based high-electron mobility transistor (HEMT) grown on SiC substrate are presented. The measurement of temperature distribution on HEMT surface using Raman spectroscopy is presented. We have deployed a temperature measurement approach utilizing electrical I-V characteristics of the neighboring Schottky diode under different dissipated power of the transistor heat source. These methods are verified by measurements with micro thermistors. The results show that these methods have a potential for HEMT analysis in thermal management. The features and limitations of the proposed methods are discussed. The thermal parameters of materials used in the device are extracted from temperature distribution in the structure with the support of 3-D device thermal simulation. The thermal analysis of the multifinger power HEMT is performed. The effects of the structure design and fabrication processes from semiconductor layers, metallization, and packaging up to cooling solutions are investigated. The analysis of thermal behavior can help during design and optimization of power HEMT.


2012 ◽  
Vol 503-504 ◽  
pp. 764-767 ◽  
Author(s):  
Lin Zhu ◽  
Lin Pan

The super-thin rod cylindrical grinding is a problem in the machining, super-thin rod with large slenderness ratio, poor rigidity, large roundness error after grinding, and with low processing efficiency. This study uses cylindrical honing processing super-thin rod parts, and designing the super-thin rod cylindrical honing head, carrying on a honing test. The results show that the super-thin rod cylindrical coarse honing capacity reach up to 0.002mm/double stroke(length 1698mm), surface roughness reach up to Ra 0.8 ~ 0.025μm after honing, roundness error reach up to 2μm. It fully shows that super-thin rod cylindrical honing technology has high precision, low surface roughness, flexible production processing and high efficiency.


2013 ◽  
Vol 387 ◽  
pp. 115-119
Author(s):  
Qing Zhang ◽  
Kun Zhao ◽  
Ying Yue Xiao ◽  
Xian Rong Qin ◽  
Yuan Tao Sun ◽  
...  

Only the basic wall thickness of drum is taken under consideration in traditional parallel grooved drum strength analysis, which is quite conservative for ignoring the thickness of the groove. So in this paper, it is aimed at comparing the strength simulation results for two drum models with and without the thickness of the groove and analyzing the stress distribution of the drum structure, which provides reference for the structure design and optimization of the drum.


2019 ◽  
Vol 26 (3) ◽  
pp. 473-483
Author(s):  
Muhammad Omar Shaikh ◽  
Ching-Chia Chen ◽  
Hua-Cheng Chiang ◽  
Ji-Rong Chen ◽  
Yi-Chin Chou ◽  
...  

Purpose Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material costs. While the feasibility of wire-feed AM has been demonstrated, the accuracy and surface finish of the produced parts is generally lower than those obtained using powder-bed/-feed AM. The purpose of this study was to develop and investigate the feasibility of a fine wire-based laser metal deposition (FW-LMD) process for producing high-precision metal components with improved resolution, dimensional accuracy and surface finish. Design/methodology/approach The proposed FW-LMD AM process uses a fine stainless steel wire with a diameter of 100 µm as the additive material and a pulsed Nd:YAG laser as the heat source. The pulsed laser beam generates a melt pool on the substrate into which the fine wire is fed, and upon moving the X–Y stage, a single-pass weld bead is created during solidification that can be laterally and vertically stacked to create a 3D metal component. Process parameters including laser power, pulse duration and stage speed were optimized for the single-pass weld bead. The effect of lateral overlap was studied to ensure low surface roughness of the first layer onto which subsequent layers can be deposited. Multi-layer deposition was also performed and the resulting cross-sectional morphology, microhardness, phase formation, grain growth and tensile strength have been investigated. Findings An optimized lateral overlap of about 60-70% results in an average surface roughness of 8-16 µm along all printed directions of the X–Y stage. The single-layer thickness and dimensional accuracy of the proposed FW-LMD process was about 40-80 µm and ±30 µm, respectively. A dense cross-sectional morphology was observed for the multilayer stacking without any visible voids, pores or defects present between the layers. X-ray diffraction confirmed a majority austenite phase with small ferrite phase formation that occurs at the junction of the vertically stacked beads, as confirmed by the electron backscatter diffraction (EBSD) analysis. Tensile tests were performed and an ultimate tensile strength of about 700-750 MPa was observed for all samples. Furthermore, multilayer printing of different shapes with improved surface finish and thin-walled and inclined metal structures with a minimum achievable resolution of about 500 µm was presented. Originality/value To the best of the authors’ knowledge, this is the first study to report a directed energy deposition process using a fine metal wire with a diameter of 100 µm and can be a possible solution to improving surface finish and reducing the “stair-stepping” effect that is generally observed for wires with a larger diameter. The AM process proposed in this study can be an attractive alternative for 3D printing of high-precision metal components and can find application for rapid prototyping in a range of industries such as medical and automotive, among others.


1999 ◽  
Author(s):  
Todd F. Miller ◽  
David J. Monk ◽  
Gary O’Brien ◽  
William P. Eaton ◽  
James H. Smith

Abstract Surface micromachining is becoming increasingly popular for microelectromechanical systems (MEMS) and a new application for this process technology is pressure sensors. Uncompensated surface micromachined piezoresistive pressure sensors were fabricated by Sandia National Labs (SNL). Motorola packaged and tested the sensors over pressure, temperature and in a typical circuit application for noise characteristics. A brief overview of surface micromachining related to pressure sensors is described in the report along with the packaging and testing techniques used. The electrical data found is presented in a comparative manner between the surface micromachined SNL piezoresistive polysilicon pressure sensor and a bulk micromachined Motorola piezoresistive single crystal silicon pressure sensor.


2016 ◽  
Vol 24 (7) ◽  
pp. 1640-1646 ◽  
Author(s):  
李勇军 LI Yong-jun ◽  
张 敏 ZHANG Min ◽  
薛 松 XUE Song ◽  
贾丹丹 JIA Dan-dan ◽  
金利民 JIN Li-min

2014 ◽  
Vol 1065-1069 ◽  
pp. 2137-2140
Author(s):  
Xiao Hu Yang ◽  
Yan Long ◽  
Ling Zhao Meng ◽  
Yu Hui Jin

In this paper, we used orthogonal experiment method and Computational Fluid Dynamics (CFD) technology to simulate the thermal environment of the iron and steel workshop. By comparing and analyzing the temperature distribution and air flow of workshops with different window structures, we obtained an optimization of natural ventilation design for industrial workshop. The research results can be used for the structure design or reformation of industrial workshops as reference.


2005 ◽  
pp. 1853-1856
Author(s):  
J.H. Lee ◽  
D.H. Oh ◽  
G.J. Lee ◽  
S.C. Joo ◽  
B. Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document